CRYSTRALLIZATION OF AMORPHOUS FORSTERITE PROMOTED BY WATER VAPOR.

D. Yamamoto^{1*} and S. Tachibana¹. ¹Department of Natural History Sciences, Hokkaido University, Japan. ^{*}E-mail: daiki@ep.sci.hokudai.ac.jp

Introduction: Both amorphous and crystalline silicates are present in the matrices of primitive chondrites. Infrared spectroscopic observations of protoplanetary disks have also shown the existence of both crystalline and amorphous silicates [e.g. 1]. In contrast, silicate dust in the interstellar medium is mostly amorphous [2]. Amorphous silicates are therefore considered to be precursors of crystalline silicates in protoplanetary disks. Crystallization of amorphous silicates has been investigated experimentally [e.g. 3], but the effect of disk gas such as H_2O on the crystallization behavior has not yet been investigated in detail. In this study, we investigated the effect of water vapor on the crystallization kinetics of amorphous forsterite in protoplanetary disk.

Purpose: We performed crystallization experiments of amorphous forsterite powder, synthesized by a thermal plasma method, in vacuum condition (~10⁻⁴ Pa) using a gold-image vacuum furnace (thermo-Riko GFA430VN) at 953, 1003, and 1023 K. We also made experiments in sealed glass tubes, where the water vapor pressure (P_{H2O}) was kept at 0.65 bar either by a Ca(OH)₂-CaO buffer system at 773 K or by complete dehydration of Mg(OH)₂ at 823 and 873 K. The sealed glass tubes were heated in a box furnace. Run products were analyzed with FT-IR (KBr pellet method). Quantitative analysis of the degree of crystallization was made with spectral fitting of run products, and the time evolution of crystallization was fitted with the Johnson-Melh-Avrami (JMA) equation.

Results and Discussion: The temperature dependence of the time constant of crystallization (τ), which represents the time required for the crystallization degree of ~63 %, in vacuum showed the Arrhenius relationship at 953–1023 K, and the activation energy for crystallization was 410 kJ/mol. On the other hand, the activation energy for crystallization at P_{H2O}=0.65 bar was smaller than that in vacuum (~89 kJ/mol). The obtained value of τ at 773 K and P_{H2O}=0.65 bar was ~16 hr. When τ in vacuum was extrapolated to the lower temperature assuming that the kinetic parameter of *n* in the JMA equation (~1.5 at 953–1023 K) was constant irrespective of temperature, it would be ~8×10⁶ hr that is ~5 orders of magnitude larger than that at P_{H2O}=0.65 bar. This clearly indicates that the crystallization of amorphous forsterite is promoted in the presence of water vapor.

In the structure of Mg_2SiO_4 -composition glass [4], MgO_X units act as a network former and SiO_4 units form polymer and dimer. We propose that water molecules diffuse into the amorphous structure to break Si-O-Si bonds and MgO bonds as a network modifier and promote the crystallization of amorphous forsterite as suggested for SiO₂ glass [5].

Present results imply that the crystallization of amorphous silicates may take place more effectively in the presence of water vapor in protoplanetary disks.

References: [1] Henning Th. 2010. Annual Review of Astronomy and Astrophysics 48:21–46. [2] Kemper F. et al. 2004. Astrophysical Journal 609: 826–837. [3] Brucate J. R. and Nuth J. A. 2010. Protoplanetary Dust (Apai and Lauretta, Eds.) [4] Kohara S. et al. 2004. Science 303:1649–1652. [5] Wagstaff F. E. and Richards K. J. 1966. Journal of The American Ceramic Society 49:118–121.