EXPLORING THE LIMITS OF HI ISOTOPIC ANALYSIS BY SINGLE-COLLECTOR, SECTOR FIELD ICP-MS

A. K. Souders,¹ Q.-Z. Yin¹ Y. Amelin². ¹Dept. Earth & Planet. Sci.,, University of California at Davis, CA, 95616 USA. E-mail: souders@ucdavis.edu; qyin@ucdavis.edu. ²Research School of Earth Sciences, Australian National Univ., Canberra, Australia (yuri.amelin@anu.edu.au).

The Lu-Hf decay system has been used in planetary science as both a geochemical tracer and for geochronology. Phosphate minerals preferentially incorporate rare-earth elements such as Lu, while excluding Hf, making them excellent target minerals for Lu-Hf isotopic dating [1]. However, measurement of Hf isotopic compositions remains a challenge for conventional MC-ICPMS analysis due to low total Hf concentrations. Because of this, Hf isotope composition measurements of phosphate minerals separated from meteorites are rare [2].

We have developed an ICP-MS technique for determination of ¹⁷⁶Hf/¹⁷⁷Hf ratios in phosphates having low Hf concentrations (<< 1 ng/g). Because of its high sensitivity and rapid scanning abilities we have used a Thermo-Fisher Element-XR, singlecollector, sector-field ICP-MS. The Element-XR was fitted with a 'H' skimmer cone (Ni) and Jet sampler cone to enhance instrument sensitivity. Samples were introduced into the mass spectrometer using a Nu Instruments DSN-100 desolvating nebulizer at a rate of ~100 μ l/min. The addition of the Jet sampler cone and desolvating nebulizer resulted in > 40x signal enhancement for all isotopes measured. In order to reduce background counts on all isotopes a 2% HNO₃ + 0.05M HF solution was aspirated overnight, prior to each analytical session. Typical blank count rates were less than 1000 cps for the most abundant isotope, $^{180}\mathrm{Hf.}$ This corresponds to ~ 50 fg/g Hf blank. The future challenge is to develop miniature column chemistry technique to reduce total Hf procedure blank to levels of <50 fg/g. Measurements were made in fast, Escan mode with a dwell time of 25 ms for ¹⁷²Yb, ¹⁷⁴(Yb+Hf), ¹⁷⁵Lu, ¹⁷⁸Hf, and ¹⁸⁰Hf and a dwell time of 100 ms for ¹⁷⁶(Yb+Lu+Hf), ¹⁷⁷Hf and ¹⁷⁹Hf for a total time of 425 ms/sweep. Each analysis consisted of 500 sweeps for a total time of approximately 3.5 minutes. Ion intensities were ~20,000 cps/ppt for ¹⁸⁰Hf. Raw data was processed off-line. All raw signals are blank corrected using the mean count rates for the blank measured between each standard and unknown analysis. Yb and (Yb+Lu) interference corrections were made for ¹⁷⁴Hf and ¹⁷⁶Hf, respectively. Hf mass bias factor (β_{Hf}) was calculated using the exponential law and ${}^{179}\text{Hf}/{}^{177}\text{Hf} = 0.7325$ [3]. Hf isotope ratios are calculated and corrected for instrumental mass bias using β_{Hf} and then normalized to the average Hf isotopic composition for the JMC 475 standards run before and after each unknown.

The average ¹⁷⁶Hf/¹⁷⁷Hf for 100 pg/g Hf JMC 475 solutions run to date on the Element-XR is 0.2822 ± 0.0008 (2SD, n = 8), similar to results for a 100pg/g Hf JMC 475 solution analyzed on the Neptune MC-ICPMS in our lab (0.2820 ± 0.0011 , 2SD, n = 4), and within error or the reference value of 0.28216 [2]. The average ¹⁷⁶Hf/¹⁷⁷Hf for 10 pg/g Hf JMC475 solutions run to date on the Element-XR is 0.2820 ± 0.0007 (2SD, n = 10). The average ¹⁷⁶Hf/¹⁷⁷Hf for a 10 pg/g Hf BCR2 solution is $0.2828 \pm$ 0.0011 (2SD, n = 3). We will apply the ICPMS technique to measure Hf isotopic compositions of phosphate mineral separates from well-preserved, low-shock, rapidly cooled meteorites.

References: [1] Barfod G.H. et al. 2003. *Chem Geol* 200: 241-253. [2] Amelin Y. 2005. *Science* 310:839–841. [3] Blichert-Toft J. et al. 1997. *Contrib Mineral Petrol* 127:238-260.