PRESOLAR SIC X GRAINS WITH LOW ²⁹Si/³⁰Si RATIOS: IMPLICATIONS FOR SUPERNOVA MODELS.

P. Hoppe¹, M. Pignatari², and E. Zinner³. ¹MPI for Chemistry, Mainz, Germany. E-mail: peter.hoppe@mpic.de. ²Konkoly Observatory, Budapest, Hungary & NuGrid Collaboration. ³Washington University, St. Louis, MO, USA.

Introduction: A rare subgroup of presolar grains are SiC grains from supernovae (SNe), the C and X grains [1]. Important characteristics of X grains are enhanced isotope abundances of ¹²C (mostly), ¹⁵N, and ²⁸Si. First attempts to explain these signatures (and others) in the context of SNII models considered selective mixing of matter from the inner Si- and S-rich zone (²⁸Si-rich) with matter from the C-rich outer zone (¹²C-rich). More recently, Pignatari et al. [2] presented an alternative scenario in which a C- and Si-rich (C/Si) zone forms by explosive He burning at the bottom of the He shell, from which SiC might condense without the need for selective, large-scale mixing.

Here, we focus on rare X grains with low ${}^{29}\text{Si}/{}^{30}\text{Si}$ ratios (<0.5x the solar ratio). Data from the literature (2 grains for which C, N, and Si isotope data exist) [3,4] and from a NanoSIMS ion imaging survey of presolar SiC grains (2 grains, this work) are compared with predictions from two SN models [5].

Experimental and Results: About 1200 SiC grains from Murchison separate KJA [6] were screened for X grains by C and Si ion imaging with the NanoSIMS at MPI for Chemistry. 13 X grains were identified, two of which showed low solar-normalized ²⁹Si/³⁰Si ratios of 0.47 and 0.51, similar to the values of the two previously found grains [3,4]. Alltogether, these grains have δ^{29} Si from -658 to -530‰, δ^{30} Si from -234 to -52‰, ¹²C/¹³C from 137 to 2100, and ¹⁴N/¹⁵N from 44 to 175.

Discussion: Two SNII models are explored, the 25 Mo models 25T-H and 25T-H10 of [5]. These models consider ingestion of H (1 % and 0.1 % H, respectively) into the He shell before the explosion and artificially increase temperature and density at the bottom of the He shell during explosion. In both models the C/Si zone extends over <0.05 M_{\odot} at about 6.82 M_{\odot} . This layer has mostly low ²⁹Si/³⁰Si and integration over a subzone can reproduce the Si-isotopic ratios of the X grains considered here reasonably well (Table). However, ${}^{12}C/{}^{13}C$ and N/C don't agree at all with those of the X grains. If we expand the integration by ~0.2 M_{\odot} to the overlaying O/nova zone then the ${}^{12}C/{}^{13}C$ and N/C ratios of X grains can be roughly matched (models marked by * in the Table). However, these mixtures cannot reproduce the Siisotopic ratios and C/O is <1. In a next step we will explore the constraints from X grains with low ²⁹Si/³⁰Si ratios on the SN models of [5], which may provide crucial observational indications for H-ingestion events in massive star SN progenitors.

Model	$^{12}C/^{13}C$	¹⁴ N/ ¹⁵ N	δ ²⁹ Si	δ ³⁰ Si	[C]	[Si]	N/C
			(‰)	(‰)	(wt%)	(wt%)	
25Т-Н	~10 ⁸	1.7	-580	60	22	18	~10-8
25T-H10	~10 ⁸	1.7	-570	60	23	18	~10-8
25T-H*	350	3.3	1470	690	1.4	2.3	0.9
25T-H10*	280	13.8	-20	170	5.2	2.7	0.1

References: [1] Zinner E. (2014) In *Treatise on Geochemistry* 2nd Ed., Chap. 1.4 (ed. A. Davis), pp. 181. [2] Pignatari M. et al. (2013) *ApJ*, 771, L7. [3] Besmehn A. & Hoppe P. (2003) *GCA*, 67, 4693. [4] Marhas K. et al. (2008) *ApJ*, 689, 622. [5] Pignatari M. et al. (2015) *ApJL*, submitted. [6] Amari S. et al. (1994) *GCA*, 58, 459.