THE CARBON-13 POCKETS IN AGB STARS AND THEIR FINGERPRINTS IN MAINSTREAM SIC GRAINS.

N. Liu^{1,2}, A. M. Davis^{1,2,3}, R. Gallino⁴, M. R. Savina^{1,5}, S. Bisterzo⁴, F. Gyngard⁶, N. Dauphas^{1,2,3} and M. J. Pellin^{1,2,3,5}. ¹Chicago Center for Cosmochemistry. ²Department of the Geophysical Sciences, ³Enrico Fermi Institute, University of Chicago, Chicago, IL. ⁴Dipartimento di Fisica, Universitá di Torino, Torino, Italy. ⁵Materials Science Division, Argonne National Laboratory, Argonne, IL. ⁶Laboratory for Space Sciences, Washington University, St. Louis, MO. E-mail: lnsmile@uchicago.edu.

Introduction: Asymptotic giant branch (AGB) stellar model predictions suffer from uncertainties in the major neutron source, $^{13}C(\alpha,n)^{16}O$. It is unclear what process(es) are responsible for mixing protons from the bottom of the convective envelope into the He-intershell to form the ^{13}C -pocket [1]. Thus, the concentration and profile of ^{13}C nuclei within the ^{13}C -pocket, as well as the ^{13}C -pocket mass are poorly known [1]. AGB model predictions for $^{88}Sr/^{86}Sr$, $^{138}Ba/^{136}Ba$, and $^{92}Zr/^{94}Zr$ ratios strongly depend on the ^{13}C -pocket adopted in AGB models, because: 1) neutron-magic nuclei (^{88}Sr and ^{138}Ba) behave as bottlenecks in the *s*-process path due to their low Maxwellian-averaged neutron-capture cross sections (MACS) [2, 3]; and 2) the ^{92}Zr MACS deviates from $1/v_T$ rule, while the ^{94}Zr MACS closely follows the rule at relevant AGB temperatures [4]. Thus, Sr, Zr, and Ba isotope ratios in mainstream SiC grains from low-mass AGB stars can provide stringent constraints on the ^{13}C -pockets.

Results: Acid-cleaned presolar SiC grains from Murchison were used for Ba, and correlated Sr and Ba isotope measurements with CHARISMA at Argonne National Laboratory [2, 3]. Carbon and Si isotopes were measured afterwards by NanoSIMS.

Discussions: We compared mainstream grain data with AGB model with varying ¹³C-pockets. We found that although small ¹³C-pockets with flat ¹³C profiles can explain some unusual ¹³⁸Ba/¹³⁶Ba and ⁹²Zr/⁹⁴Zr ratios in mainstream SiC grains, in most of the cases, it is impossible to distinguish the effect of ¹³Cpocket mass from that of 13C concentration using only one isotope tracer [2, 4]. We therefore simultaneously measured Sr and Ba isotope ratios in mainstream SiC grains [3]. Comparison of AGB model calculations with the grain data shows that ⁸⁸Sr/⁸⁶Sr predictions strongly depend on the ¹³C concentration, while ¹³⁸Ba/¹³⁶Ba predictions depend on both the ¹³C concentration and the 13C-pocket mass. Correlated 88Sr/86Sr and $^{138}\mathrm{Ba}/^{136}\mathrm{Ba}$ ratios allow us for the first time to resolve the effect of ¹³C-pocket mass from that of the ¹³C concentration within the pocket, which points towards the common existence of large ¹³Cpockets with relatively dilute ¹³C concentrations in parent AGB stars. Formation of such large ¹³C-pockets requires occurrence of multiple mixing processes, which could be caused by overshoot, gravity waves and/or magnetic buoyancy [e.g., 5, 6, 7] along the boundary between the bottom of the convective envelope and the He-intershell in AGB stars, perhaps related to rotation rate [8].

References: [1] Gallino R. et al. 1998. The Astrophysical Journal 497:388–403. [2] Liu N. et al. 2014. The Astrophysical Journal 786: 66–85. [3] Liu N. et al. 2014. Lunar and Planetary Science 40:#1777. [4] Liu N. et al. 2014. The Astrophysical Journal 788: 163–169. [5] Straniero O. et al. 1995. The Astrophysical Journal 440: 85–87. [6] Denissenkov P. A. & Tout C. A. 2003. Monthly Notices of the Royal Astronomical Society 340: 722–732. [7] Busso M. et al. 2012. Proceedings of Science (NIC XII):#020. [8] Herwig F. et al. 1997. The Astrophysical Journal 324: L81–L84.