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Introduction:  Human exploration and settlement 

of Mars is of interest to SpaceX [1] as well as NASA, 
ESA, and CNSA (China). H2O is essential for drink-
ing, growing food, and producing oxygen and hydro-
gen, but avoiding polar regions is important to keep 
temperatures moderate and for solar power. 
MRO/HiRISE working with JPL has been imaging 
candidate landing sites for SpaceX. This effort is fo-
cused on the northern mid-latitudes because of low 
altitudes, the known presence of shallow ice down to 
39°N [2], and milder winters than the southern middle 
latitudes. Human Mars landers will likely target flat 
landing sites (slopes <5°) that are relatively free of 
large boulders and dust.   

Based on topographic data and HiRISE images, 
two regions stand out as most promising: Arcadia 
Planitia and Phlegra Montes (Fig. 1).  Arcadia Planitia 
is especially flat and has extensive apparently boul-
der-free areas. Phlegra Montes probably also has doz-
ens of acceptable areas (>200 m diameter) plus other 
advantages. In the Phlegra Montes there are Noachian 
and Hesperian terrains likely to provide diverse mate-
rials in addition to regolith and ice, and there are hills 
that provide north- and south-facing slopes.  Shallow 
ice is stable down to lower latitudes on pole-facing 
slopes [3], and surface temperatures are higher on 
equator-facing slopes. A landing site on a flat area 
near north- and south-facing slopes might be ideal.  

 
Figure 1.  Location map on color-coded altimetry 
from 20–60º N, 140–200º E. Yellow diamonds indicate 
ice-exposing impacts [2]. Locations of Figs. 3 and 4 
are marked with white stars. 
 

Geology of Phlegra Montes:  This 1,400 km long 
set of elevated features extends from 30-52° N and 
160-170° E. The large-scale topography is that of 
asymmetric linear-to-arcuate ridges interpreted as 
nine major and several minor thrust-fault structures 

[4]. The hills are heavily modified by glacial flow 
landforms, some of which have radar-sounding re-
turns interpreted as nearly pure ice under a debris 
layer [5–8]. The bedrock composition is poorly 
known because of Amazonian modification, but ba-
saltic compositions have been detected in nearby Ere-
bus Montes [9].  

 
Figure 2:  HRSC perspective view of a portion of 
southern Phlegra Montes.  ESA/DLR/FU Berlin. 
(http://www.esa.int/spaceinimages/Images/2011/12/P
hlegra_Montes_in_perspective2 
 

Evidence for Shallow Ice:  Icy flow geomorphol-
gies are ubiquitous in Phlegra Montes [10] (Fig. 2).  
One location has been interpreted to have had over 1 
km ice thickness [11]. Remnant debris-covered glaci-
ers in the Phlegra Montes have been estimated to con-
tain tens to hundreds of km3 of ice today [12].  Inter-
pretation of eskers suggests wet-based glaciation oc-
curred in southern Phlegra Montes [13]. The mid-
latitude flow features are presently covered by at least 
a few meters and perhaps tens of meters of rocky de-
bris [14].  However, there are recent impact sites ex-
posing clean ice from <1 m depth near here [2], in-
cluding one example at 39.1°N latitude (Fig. 3). 
Thermokarst features in this region have been identi-
fied equatorward of 30N [15] and are also interpreted 
as contemporary presence of ice. A recent study [16] 
has found a high consistency of ice across the 
Phlegra-Arcadia area using various datasets. Ice-
exposing craters in the Phlegra-Arcadia region of 
Mars are typically found on terrain with ubiquitous 
polygonal pattern, few boulders and sometime near 
thermokarst landforms. Polygons of this size (£10 m) 
form by thermal contraction cracking of ice beneath a 
thin layer of regolith [17]. Our working hypothesis is 
that nearby terrains with ~10 m scale polygons, or 
thermokarst landforms, have shallow ice today.  
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Boulders:  The “Golombek rule” is that an ac-
ceptable landing site has zero boulders detected in 
full-resolution HiRISE images [18].  This rule is 
based on the fact that HiRISE boulder detection is 
complete at >1.5 m diameter, and given exponential 
extrapolation to 1-m diameter (typically 0.5 m high), 
even a single boulder detection could result in >1% 
chance of the lander failing due to a boulder.  The 
SpaceX Starship is a very different landing system 
from past NASA landers, and the tolerance for boul-
ders may differ, but are still best avoided.  

 
Figure 3: New ice-exposing impact crater cluster east 
of Phlegra Montes (HiRISE ESP_029467_2195). 

 
There are now >100 HiRISE images from 30-40° 

N and 160-166° E, about half at full resolution. (We 
are assuming that above 40°N is unacceptable due to 
low winter temperatures and the polar hood). Alt-
hough this is extremely sparse coverage (<5%), there 
are at least 7 images showing large areas (>200 m) 
with no boulders and with polygons that may indicate 
shallow ice (Fig. 4). These areas have moderate to 
moderately-low thermal inertia [19], high albedo [20], 
and a low dust cover index [21] suggesting near sur-
face materials are dominantly dry sandy soils with a 
thin coating of dust.  

Slopes: MOLA data indicates regional (35-km) 
slopes range from 0-20° over Phlegra Montes; rough-
ness mapping shows relatively low small-scale rough-
ness typical of the middle to high latitudes [22]. Po-
lygonal terrain at the Phoenix landing site is relatively 
smooth [17]. There are currently 5 good HiRISE ste-
reo pairs over promising locations (that appear flat 
and are nearly boulder free); at least one digital ter-
rain model (DTM) will be completed by the time of 
the conference.   

Future Data Needs:  Waiting for new impact 
events to confirm shallow ice at new sites from 30-
40° N could take decades.  A recent study [23] con-
cluded that Polarimetric Synthetic Aperture Radar on 
a future Mars orbiter is needed to map the distribution 
of ice within the top few 10s of meters.  Additional 
HiRISE-class images are needed in potential landing 
sites, including stereo coverage. 

 
Figure 4. 300-m wide area with polygons and no re-
solved boulders, located at 38.7 N, 163.88 E.  A DTM 
will be produced here to determine small-scale slopes.  
Portion of ESP_035362_2190.   
 

References: [1] Wooster, P. et al. (2018) 42nd 
COSPAR Scientific Assembly, Abstract id. B4.2-31-
18. [2] Dundas, C.M. (2014) JGR 119,  
2013JE004482. [3] Aharonson, O. and Schorghofer, 
N. (2006) JGR 111, E11007.  [4] Klimczak, C. et al. 
(2018) JGR-Planets 123, 1973-1995. [5] Holt, J.W., et 
al. (2008) Science 322, 1235–1238. [6] Plaut, J.J., et 
al. (2009) Geophys. Res. Lett. 36, L02203. [7] Sa-
faeinili, A. et al. (2009), LPSC XL, #1988. [8] Pe-
tersen, E.I. et al. (2018) GRL 45, 11,595-11,604. [9] 
Rogers, D. and P.R. Christensen (2003) JGR 108, 
5030. [10] Kress, A. et al. (2010) 41st LPSC, #1166. 
[11] Dickson, J.L. et al. (2010) E&PSL 294, 332-342. 
[12] Levy, J.S., et al. (2014). JGR, 119, 2188–2196. 
[13] Gallagher, C. and M. Balme (2015) E&PSL 431, 
96-109. [14] Baker, D.M.H. and L.M. Carter (2019) 
Icarus 319, 745-769. [15] Viola, D., and A.S. McEwen, 
2018, JGR, 123, 262-277. [16] Putzig, N.E. (2019) 
Ninth Int’l Conf. on Mars, Abstract #6427; 
swim.psi.edu. [17] Mellon, M.T. et al. (2008) JGR 
113, E00A23. [18] Golombek, M.P. et al. (2008) JGR 
113, E00A09. [19] Putzig, N. and M. Mellon (2007) 
Icarus 191, 68–94. [20] Christensen, P. et al. (2001) 
JGR 106, 23823–23871. [21] Ruff, S. and P. Christen-
sen (2002) JGR 107, 5127. [22] Kreslavsky, M.A. and 
J.W. Head (2002) GRL 29, 14-1. [23] MEPAG ICE-
SAG Final Report (2019), at 
http://mepag.nasa.gov/reports.cfm.  

6008.pdfSeventh Mars Polar Science Conf. 2020 (LPI Contrib. No. 2099)


