Lunar ISRU 2019
First Lunar In Situ Resource Utilization (ISRU) Workshop
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Addressing the “WHY” of Space Resources In Space Developed Production

“already being produced & used’ A

Prospecting Criteria (Landing Site Selection)
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Simplified schematic (left) depicting interrelated conditions necessary to support and develop a long-term and sustainable human presence off Earth. Both the Science and Permanence sides
of “WHY” may follow the same basic steps through resource acquisition, but due to lower expected resource NEEDs of lower population science driven missions, sustainability and resource
requirements remain in question.

A human landing site should only be selected when sufficient resource knowledge is available via iterative prospecting (e.g., singularly focused precursor missions) combined with the use of
the Planetary Resource Management System (PMRS) or similar tool (right), which provides guidelines and capability levels needed to identify, access and develop desired resources (space
agencies do not have the luxury of drilling a “dry-hole” after humans arrive).
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most conservative probability used here is the P95, which

indicates the potential of recovering approximately 0.0038 km3 of  EUR Monte Carlo model of probable water-ice equivalent content  EUR Analysis of probable water-ice equivalent content across
water-ice from any PSR regolith. Lake Baikal for comparison, across full aerial range of established PSR crater areas from 10.001 individual range of established PSR crater areas (km?) focusing on 4
contains 23,013 km3 fresh water. to 1075.518 (km?) - https://www.lroc.asu.edu/psr/list. key sizes: L =10.001; M =62.19; H = 663.93 and Max = 1075.518.

IN SPACE USERS: Resource “needs” will be ultimately and possibly only, driven by in-space human populations. Taking a proposed SpaceX growth rate (max rate example below — 100 launch
and 75 return every 6 months), it would take about 23 years to have a permanent resident working population the size of the summer population at McMurdo base in Antarctica (1200 people
11s outlook and growth information must be understood as it will be the primary driver for resource consumption and needs going forward. Here we assumes all missions go to same
tination and create a growing infrastructure. A consequence of this permanence approach is that all efforts on the lunar surface must go into one sustainable infrastructure, and that un
ime as the base is functionally established, no/few science activities at other, distal sites, would likely be enacted. But, by the simple fact that people will be going there, scientific
1, beyond ISRU, will be conducted.
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