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Model Based on Conceptual Designs
for Robotically Assembled and
Operated Base

Functional decomposition of ice-based propellant ISRU
Led to design of minimal set of base elements

| | |

Conceptual designs for major elements of an
ISRU base provide a starting point for the model

Power System — 500 kW capacity, near-100% duty cycle, Power
modular units landed intact, then connected via cables -
or laser WPT

Habitat

Habitat System — Minimal functions, 30-d visits: hab,
ogistics, workshop, EVA, regolith-shield superstructure

SRU Mining System — Mobile robots that reach, _!!..
excavate, beneficiate, and transport lunar regolith (or
extract resource onboard and transport it)

Extraction

ISRU Extraction System — Processor that separates frozen
volatiles from lunar regolith

ISRU Volatiles Processing System — Plant that separates
water from other volatiles, and cracks it into H, and O,

ISRU Depot System — Plant that liquefies, cryogenically
stores, and distributes cryogenic propellant to reusable
anders

Lander System — Reusable, refuelable lander, reusable
anding pad, and ground support systems

Water mining needs flow from assumptions on self-

sustaining lander fueling (LOx/LH2) capability
* Lander flights per year: 4

(jelliott@jpl.nasa.gov)

Three Base/ISRU Siting Options (Using Shackleton as Example)
Considered to Exercise Model with Variety of Resource Assumptions

Polar ICE FESOUFCG assumptlons

* Bin by water-stability depth into four terrain types
* Map areas that have 20-m DEM and high-res thermal models
* |[lustrated: Hermite-A crater, lunar north pole
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Option 2 assumes excavation in the PSR, with Base
and Processing located outside on crater rim
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Option 3 Looks at gathering resources from Type 2
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Base Model in Development. Example Given for Base Power Trades

Overview of model — steady state system

— Major demand
-===» Minor demand ISRU

(might be ignorable) (+ delivered fuel)

Example energy system model shows basic energy
oroduction and distribution architecture

* Solar for primary production, fuel cells for mobile units and overnight
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