OPERATIONS MODELING OF ISRU LUNAR BASE ARCHITECTURES

J. O. Elliott¹, A. Austin¹, P. Metzger², B. Sherwood¹ and M. Smith¹ ¹Jet Propulsion Laboratory, California Institute of Technology, ²University of Central Florida (jelliott@jpl.nasa.gov)

Model Based on Conceptual Designs for Robotically Assembled and Operated Base

Functional decomposition of ice-based propellant ISRU Led to design of minimal set of base elements

Conceptual designs for major elements of an ISRU base provide a starting point for the model

Power System – 500 kW capacity, near-100% duty cycle, modular units landed intact, then connected via cables or laser WPT

Habitat System – Minimal functions, 30-d visits: hab, logistics, workshop, EVA, regolith-shield superstructure

ISRU Mining System – Mobile robots that reach, excavate, beneficiate, and transport lunar regolith (or extract resource onboard and transport it)

ISRU Extraction System – Processor that separates frozen volatiles from lunar regolith

ISRU Volatiles Processing System – Plant that separates water from other volatiles, and cracks it into H₂ and O₂

ISRU Depot System - Plant that liquefies, cryogenically stores, and distributes cryogenic propellant to reusable landers

Lander System – Reusable, refuelable lander, reusable landing pad, and ground support systems

- Lander flights per year: 4
- Propellant required per flight: 40,000 kg
- Water required per flight: **51,500 kg** (6:1 engine ratio vs. 8:1 water mass ratio) Water need: 206,000 kg/yr
- (=1,130 kg/d @ half-time operations)

Resource need

- Type 1: **0.15** m³ (~210 kg) per kg of H₂O yield
- Type 2: **0.40 m³ (~600 kg)** per kg of H₂O yield

Regolith need

- Type 1: 240,000 kg/d @ half-time
- Type 2: 680,000 kg/d @ half-time

Base Relative Energy Needs

Emergent Findings

- Nuclear power useful for production-scale ISRU would have to be MWe class
- "Best" ice resource and location may not be in a PSR
- Potential competitive roles for commercial actors
- Power providers, extraction rovers
- Empirical knowledge gaps with high leverage
 - Vertical distribution at m scale wt% of ice as a function of depth
 - Horizontal distribution at km scale patchiness of resource "field"
 - Geotechnical properties "coffee grounds and sugar" or cryo-permafrost
 - Diffusion rate trapping vs losing the resource from heating in situ
 - Agitation loss coefficient losing the resource from handling it

National Aeronautics and Space Administration **Jet Propulsion Laboratory** California Institute of Technology

Pasadena, California

www.nasa.gov Copyright 2019. All rights reserved.

Three Base/ISRU Siting Options (Using Shackleton as Example) Considered to Exercise Model with Variety of Resource Assumptions

Polar ice resource assumptions

Option 2 assumes excavation in the PSR, with Base and Processing located outside on crater rim

Option 1 would place resource collection and processing, and the Base directly in the PSR

Option 3 Looks at gathering resources from Type 2 areas with Base and Processing located in PLR

Base Model in Development. Example Given for Base Power Trades

Overview of model – steady state system

→ Major demand ---→ Minor demand The integrated consumption model seeks to gracefully Flight H₂ consumption consumption handle the consumption interconnected aspects of the Energy lunar base in systems order to size the entire base Base (hab & Flight system maintenance)

Example energy system model shows basic energy production and distribution architecture

• Solar for primary production, fuel cells for mobile units and overnight

							`							
Architecture	PVA	Base	Mining	distance	power	habitat	flight	ISRU cables	ISRU cables	array	Longest	Recharge	FC	FC Cable
	hub	hub	hub	A->B (m)	A->B	cables (m)	cables (m)	at base (m)	at mine (m)	<cosine></cosine>	night (hrs)	time (hrs)	hub	(m)
Scheme 1	Α	В	В	10000	beam	50	200	100	0	0.95	350	720	В	200
Scheme 2	Α	Α	В	10000	beam	200	350	250	0	0.95	350	720	Α	350
Scheme 3	Α	В	В	3000	cable	50	200	100	0	0.95	350	720	В	200
	A = ha							100 excavation a				720	В	

Preliminary results illustrate model output

Array size

- Minimum base (habitat + flight) power need is approximately the same for each architecture
- ISRU dominates power need over minimum base
- Cable and beaming losses are a substantial fraction of the power budget in all cases
- Scheme 1 suffers significantly higher losses because the energy-expensive processing is a long way from the power source

6.0 4.0

Scheme 3

Scheme 2

Energy system mass

- Current assumptions require significant RFC mass to survive the longest night
- Scheme 1 has significantly more array mass due to beaming losses
- The increased mass for scheme 1 might be offset by savings elsewhere (e.g. transportation infrastructure)

Scheme 3

Scheme 2