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Introduction:  Images from the High Resolution 

Imaging Science Experiment (HiRISE) reveal meter-

scale boulders entrained in the glacial debris of 

remnant glacial landforms (LDA, CCF, and LDA) in 

the martian mid-latitudes [1]. Manual boulder 

distribution mapping in [2] revealed boulder clustering 

in these glacial deposits that was interpreted as 

banding that suggesting multiple episodes of ice 

accumulation and advance. These boulders were 

mapped on 100 m-wide transects down LDA 

centerlines, where clustering in the boulder distribution 

was interpreted as sections of boulder bands. However, 

with each centerline requiring hours to days of boulder 

mapping, manual detection and verification of the 

boulder bands is incredibly time consuming and limits 

the number of sites that can be evaluated. Automatic 

boulder detection techniques [3] have had limited 

success on remnant glacial landforms because of 

surface irregularities like “brain terrain” and serac-like 

ridges and furrows that can be steep enough to cast 

shadows which can be mis-characterized as boulder 

shadows [4]. Distinguishing these textures from 

boulders poses a difficult machine vision problem. 

More recently, instance segmentation methods in 

computer vision have excelled at predicting object 

class and location at a pixel-specific level in images 

[5]. 

In order to evaluate the extent to which glacier 

centerline boulder clusters are associated with whole-

LDA bands of debris, we use an instance segmentation 

neural network to detect and map glacial boulders on 

HiRISE images of lobate debris aprons (LDA). We use 

the already mapped boulder data from [2] for training 

and testing.  

Methods: Generating Training Data. Manually 

mapped boulder data from [2] on full-resolution (25 

cm/pixel) HiRISE images was used to create training 

and testing data for the neural network. A total of 17 

manually mapped LDA transect rasters were exported 

as 256 ´256 pixels image chips using a sliding window 

method (stride=128 pixels) along with their 

corresponding binary pixel masks delineating the 

mapped boulders in the images. Ideally, the shape of 

the pixel masks would have corresponded to the shape 

of each boulder, but since a majority of the manually 

mapped boulder dataset did not contain boulder 

widths, we chose to set circular pixel masks with 

diameters approximately equal to the 75th percentile of 

boulder diameter at each transect site. We prepared a 

training dataset containing 10,851 images contain 

90,884 boulder masks. 

Model Training. We used a Mask R-CNN 

(Regional Convolutional Neural Network), an instance 

segmentation neural network that can detect objects 

and their pixel masks in images [6]. More specifically, 

the Pytorch implementation of a Mask R-CNN was 

trained through the arcgis.learn Python module [7]. We 

divided the previously labeled data into two subsets: a 

training dataset (80% of the images) and a validation 

dataset (20% of the images) to be used to evaluate the 

model. 

We trained the model for 20 training epochs (on an 

NVIDIA GeForce GTX 1070, with 8 GB VRAM) and 

used the Resnet50 backbone (which extracts a feature 

map from an input image) [8]. At the end of training, 

the model weights were saved in a model definition 

file. 

Detecting Boulders. Finally, the trained model was 

loaded on to ArcGIS Pro to detect boulders at 5 LDA 

sites.  Each of these sites contained a manually mapped 

transects down the centerline, so detection runs were 

performed with the Mask R-CNN over a majority of 

each corresponding LDA and the results were 

compared to the manual mapping. To evaluate 

significant boulder clustering in our results, we 

examined the spatial autocorrelation of boulders using 

Moran’s i test [9], and to estimate the number of 

boulder bands, we used kernel density analysis. 

Results: Model Accuracy. Model accuracy of the 

trained Mask R-CNN was evaluated using Average 

Precision (AP), a method that considers true positives, 

false positives, and false negatives. For our trained 

model, the average precision was calculated to be 85% 

on the test (or validation) dataset, which we found was 

sufficient to gather representative morphometric 

properties of boulder bands. 

Boulder Band Detection. Boulder bands were 

detected in each of the detection sites after mapping 

with the neural network. The observed spatial 

clustering was verified through significant results in 

Moran’s i test (i > 0.9 and p-value < 0.005, indicating 

high positive autocorrelation). The observed boulder 

bands were often associated with arcuate surface 

discontinuities and surface lineations on LDA (Fig. 1), 

further suggesting the presence of internal debris layers 

at are advected down-glacier in response to orbitally- 
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Figure 1(above): Detected boulders (yellow points) and the 

kernel density (blue) from manual mapping at LDA site M 

(ESP_020558_2215). Notice the boulder band roughly 

following the surface discontinuities and aligning with the 

original kernel density. 

Figure 2 (below): (Left) Kernel density along the transect from the original manual boulder mapping at LDA site L (ESP_016271_1475). (Middle) 

Kernel density along the same transect from the neural network mapping. (Right) Manual mapping kernel density with the boulder points mapped by the 

Mask R-CNN (green points). Notice that the high boulder clusters in the manually mapped kernel density align band like features in the newly mapped 

boulder distribution. 

forced glacial/interglacial transitions [2]. 

Furthermore, comparing the kernel density of the 

RCNN-mapped boulders with the manual boulder-

mapping, the boulder cluster locations align almost 

perfectly (Fig. 2). Note that the kernel density values in 

the automatic mapping is overall lower than that in the 

manual mapping dataset since our model is not 

perfectly accurate. However, since we do not expect 

model accuracy to vary systematically across sites, our 

automatic mapping provides a reliable estimate of 

relative spatial density of boulders. 

Conclusion: Automatic detection of boulder 

banding supports the interpretation of episodic 

accumulation and flow model of LDA on Mars [2]. 

Additionally, our results are encouraging indicators of 

the potential of instance segmentation and other deep 

learning techniques in planetary geomorphology.  
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