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Introduction:  The accelerating pace of technology 
development and maturation for spaceflight has enabled 
mission architectures that were technically and cost 
infeasible a decade ago. Missions like Deep Impact, 
Rosetta/Philae, Hera/Juventas/Milani, DART/LICIA, 
and others have or will soon demonstrate that small 
spacecraft and multi-spacecraft architectures play a 
critical role in performing science investigations at 
small bodies. 

However, existing mission formulation processes 
and tools are only well-suited to optimizing single-
spacecraft mission architectures where the constraints 
of cost and risk optimization result in a limited trade 
space irrespective of the payload. When N > 1 
spacecraft are considered, the number of feasible 
architecture and system configurations grows ~N! (e.g., 
the difference in combinations of possible orbit and 
imager configurations to perform a mapping mission for 
N = 1 and N > 1). Moreover, the preliminary science 
yield calculations performed in early formulation may 
overlook the significant limitation in spacecraft 
resources (e.g., telecom, power), which can impose 
major constraints to operations and science yield. 

To advance the state of mission formulation for 
small body missions, in particular those with multiple 
spacecraft, we developed a novel integrated simulation 
tool that models science yield and mission resources as 
a function of science payload, mission and system 
design, spacecraft behavior and modes, and target 
uncertainties. This provides a comprehensive and self-
consistent approach to mission design. Here we 
demonstrate this tool for the case of a notional three-
spacecraft mission to the near-Earth asteroid (99942) 
Apophis, which will flyby Earth in 2029. 

Objective:  The principal objective of this work is 
to optimize science yield (i.e., data return volume and 
quality versus time), cost, and mission margins. The 
parameter space for optimization is defined by two 
independent axes, themselves multi-dimensional. The 
first axis describes all possible design choices for a 
given architecture, i.e., orbits, systems, and behaviors. 
The second axis describes possible small body 
properties, i.e., gravity model, shape, spin rate, and spin 
axis, based on target observations and their 
uncertainties. A simulation of the mission uses a set of 
design choices and body properties to generate a 
timeseries of all mission science samples and data, 
spacecraft position, mode, and its component states, and 
data returned to Earth. By simulating different design 

choices and analyzing outputs, we can optimize mission 
and spacecraft design parameters. By varying body 
properties and evaluate a design’s robustness to body 
uncertainty. A similar trade study optimization 
approach was used for the Habitable Exoplanet 
Observatory [1]. Figure 1 summarizes the simulation 
parameter space and outputs. 

Integrated Science and Engineering Simulation:  
This integrated simulation is the natural evolution of 
different peer-reviewed simulation codes and spacecraft 
models [2]. Once design choices are defined in code, the 
Matlab-based simulation framework first computes the 
orbits of all spacecraft, accounting for the small body’s 
higher-order gravity fields and trajectory correction 
maneuvers executed by the spacecraft. Alternatively, 
the software ingests trajectory files in SPICE/SPK 
format, generated using the Mission Analysis, 
Operations, and Navigation Toolkit Environment 
(MONTE) software, that incorporates disturbances like 
solar pressure, third body perturbation, and actuator 
uncertainties/errors [3].  

Next, the software propagates the state of spacecraft 
subsystems and components based on modes associated 
with station-keeping, navigation, science, 
telecommunications and spacecraft position/attitude. 
Behaviors are predefined for each mode and modes are 
conditionally selected at each time step. For instance, 
the behavior is to maintain spacecraft health has highest 
priority. At each time step, solar power is first used to 
power critical avionics. Excess energy can then be used 
by telecom, attitude control system/propulsion, and then 
science modes depending on spacecraft state (e.g., 
wheel saturation). Excess energy is stored or shunted. 
For each science sample, the software records the 
sampling parameters (e.g., sampled point, time) and 
quality (e.g., resolution, viewing angles, flux). The 
number of possible sampled points for the body are 

 
Figure 1. Summary of optimization simulation inputs, 
relevant variables, and outputs. 

Spacecraft Parameters
- Payload specification (e.g. 
FOV, volumes, data product 
sizes, compression)  
- Masses, inertias, areas
- Solar panel configurations
- Desired trajectory 
- Data rates
- Subsystem modes
- Resources (power, data, 
propulsion momentum)

Spacecraft Behaviors
- Payload use conditions
- Telecom Crosslink & Direct-
To-Earth conditions
- Spacecraft mode changes 
(e.g. power, thermal, 
propulsion) and rules (e.g. 
level of autonomy)
- Trajectory Change Maneuver 
(TCM) ΔVs
- Desaturation ΔVs

Body Properties
- Body shape/gravity model 
- Body spin/axis

Integrated Simulation Outputs 
(as a function of time)

- Sampling coverage, quality
- Data downlinked
- Spacecraft states and modes
- Resource use (battery, data, 
momentum)

Environment Parameters
- Datetime
- Sun, Earth, body position
- Sun, Earth, body attitude
- Solar pressure

Design Choices
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predefined for each instrument depending on its field of 
view using a Fibonacci Lattice. The final product is 
time-series of spacecraft state and data products and 
their metadata, which can then be analyzed. For 
instance, time series of bistatic radar samples and their 
sampling parameters (e.g., distances, view angles) can 
be exported to other software for analysis of 
reconstruction [4].  

Case Study: Optimizing Solar Panel Sizing for a 
Three-Spacecraft Apophis Mission:  Optimizing a 
mission’s design, whether for science yield, cost, or 
mission margins, requires multiple mission simulations. 
For this case study, we consider a three-spacecraft 
constellation that has rendezvoused with Apophis in 
order to image and take monostatic and bistatic radar 
measurements during its closest approach with Earth in 
2029. The constellation has a mothership and two 
identical CubeSats – each system type requiring unique 
specifications (e.g., only the mothership has direct-to-
Earth communications). Orbits and maneuvers are pre-
computed in MONTE and ingested into the integrated 
simulation tool, which then propagates the scenario with 
spacecraft system and behavior assumptions.  

Given this mission configuration, we seek to 
optimize solar panel sizing, i.e. find the smallest panel 
that will satisfy the science mission and battery margins. 
We simulate seven days of the science mission with runs 
assuming 10, 14, 18, and 22 W from each of the two 
solar panel wings. Table 1 summarizes optimization 
results where we find 14 W/wing as a design breakpoint. 
Figure 2 shows examples of plotted timeseries data for 
camera coverage, radar coverage, and data volume.  

Although this case study represents a simple 
optimization problem and solution, the key benefit of a 
compressive simulation tool of this kind is that mission-
level impacts of minor design decisions become readily 
identifiable. Second, we can evaluate the mission 
impact of more complex trades, e.g., changing payload 
specification, data rates, or other spacecraft component 
sizing/performance. More complex trades can also 
include changes to orbits and spacecraft behavior and 
operational modes (e.g. using autonomy to enable 
increased cadence of ΔV maneuvers needed for lower 
altitude orbits). Finally, we can verify the robustness of 
a mission design against uncertainty in body parameters 
such as spin rate/axis, gravity. 
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Table 1. Summarized results from solar panel 
optimization case study.  
Wing Power [W] 10 14 18 22 
% Time Battery 
Margin Violated 

84.0% 0.6% 0% 0% 

CubeSat Images 56 327 329 329 
Radar Coverage 0.9% 5.4% 5.4% 5.4% 
Downlinked Data [GB] 200 271 271 271 

 

 

 

 
Figure 2. Sample timeseries data from integrated 
simulations assuming 18 W/wing. Descending from 
top panel: trajectory and camera coverage; camera 
image sun angle and spatial resolution; radar 
coverage and ground tracks; and data volume 
present on each spacecraft and Earth. 
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