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Introduction:  Apart from the Earth, no planetary 

body is mapped more extensively and to such fine 
resolution as Mars. The increasing volume of remote 
sensing data means we are better equipped than ever to 
answer the fundamental questions about the history of 
the planet. However, the volume of data grows much 
faster than the number of scientists who can use it. 
Machine Learning (ML) is a powerful tool for 
automating the analysis of ever-increasing volumes of 
remote sensing data. 

Aeolian bedforms exhibit varied morphologies at 
different scales in remote sensing imagery, therefore, 
automated detection is a complicated problem. Linear 
dune fields have been successfully characterized at 
regional scales using edge detection on Titan from 
synthetic aperture radar images [1]. Within the field of 
Earth observation, an edge detection algorithm has 
been proposed that is optimized for recognizing linear 
dune fields in panchromatic Landsat 8 data and digital 
elevation models [2]. Fingerprint minutiae extraction 
software designed for forensic applications has also 
successfully detected dune crests and their bifurcations 
and terminations for linear dunes in the Namib Sand 
Sea and Strzelecki Desert, and for Transverse Aeolian 
Ridges (TARs) on Mars [3].  

A method for mapping aeolian ripples has been 
demonstrated using HiRISE imagery from Gale crater 
[4]. Similarly to earlier studies, this uses a two-step 
algorithm that segments the bedforms from the 
surrounding terrain and then detects the crestlines [5]. 
This study uses the same approach but with a 
segmentation step that classifies bedforms according to 
scale and morphology as opposed to foreground-
background. 

The aim of this study is to create a more general 
bedform detector that can be applied over larger and 
more texturally diverse areas of Mars. Moreover, it 
must perform as well as a geologist at mapping 
crestlines. This will be assessed in terms of the crest 
line maps produced but also in terms of the inferred 
wind regime. The secondary goal of this study is to 
demonstrate how ML terrain classifications designed 
for rover navigation can be repurposed for science. 

Method Development:  A machine learning 
system called the Novelty or Anomaly Hunter – 
HiRISE (NOAH-H) has been developed to classify 
terrain in HiRISE images from Oxia Planum and 
Mawrth Vallis according to texture. It was designed to 

assess terrain for rover traversability but also 
demonstrates great potential to be used for science [6]. 
Each pixel of an input HiRISE image is assigned one 
of 14 classes. These classes represent every type of 
terrain that can be found at the Oxia Planum and 
Mawrth Vallis landing sites, summarized in table 1. 
Classes 8 through to 13 are the six types of ripple 
morphology that are recognized by NOAH-H. 

1 
Non-bedrock 

Smooth, Featureless 
2 Smooth, Lineated 
3 Textured 
4 

Bedrock 

Smooth 
5 Textured 
6 Rugged 
7 Fractured 
8 

Large Ripples 
Simple form, Continuous 

9 Simple form, Isolated 
10 Rectilinear form 
11 

Small Ripples 

Continuous 

12 
Non-continuous, Bedrock 
substrate 

13 
Non-continuous, Non-
bedrock substrate 

14 Other Cover Boulder fields 
Table 1: Ontological classes used by NOAH-H. 

Large refers to decimeter scale features and small 
refers to meter scale features. 

The class "large simple form isolated ripples" 
corresponds to TARs in these regions and we use the 
NOAH-H output to segment the TARs from the 
surrounding terrain. The Canny edge detection 
algorithm is run on these regions in order to extract the 
crests of the bedforms. The steps of the algorithm are 
as follows [7]: 

1. Apply a gaussian blur to the image 
2. Find intensity gradients 
3. Suppress pixels that are not part of an 

edge 
4. Thresholding of edges according to 

gradient strength 
Preliminary results show the algorithm can pick out 

portions of TAR crests but also unwanted features. The 
next steps are tuning the edge detection thresholds so 
that it works around the whole HiRISE image, 
potentially using an adaptive method, and suppressing 
the signals from features that are not TARs. After a 
crestline detector has been refined for the “large 
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isolated ripples” class, the next steps are to refine the 
crest line detection method for the remaining five 
ripple classes detected by NOAH-H. The proposed 
pipeline for the more general bedform crestline 
detector is to use NOAH-H to segment the HiRISE 
image, and then to run each refined version of the edge 
detector on each bedform class. 

 
Figure 1. Translucent NOAH-H classification  

overlain on HiRISE image (ESP_040921_1985_RED). 
Large isolated ripples and small ripple fields overly 
predominantly rugged bedrock. 

Planned Analysis: The Aeolian environment of 
the site of the ExoMars "Rosalind Franklin" Rover has 
been characterized using manual observation 
techniques of 10,753 aeolian bedforms [8]. To validate 
that the proposed pipeline picks out bedform crests as 
well as a geologist, the results will be compared with 
the bedform crests mapped in the Favaro et al. study. 
The bedform crests will be exported as shapefiles and 
compared using GIS software. They will also be 
compared in terms of mean crestline orientation within 
4x4 km framelets. They will also be compared in terms 
of inferred wind regime and compared with a global 
climate model to see if they give the same conclusions. 
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