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Introduction: Planetary surface observations are
routinely made across a wide range of electromagnetic
wavelengths (e.g., radar, infrared, optical, ultraviolet,
x-ray, gamma-ray). Each wavelength provides unique
information about the surface's chemistry, mineralogy,
and history. This includes reflected solar light, the
magnitude of which is known as surface albedo. Many
different elements contribute to varying extent to the
albedo and the albedo can be related to the underlying
elemental distribution. These relationships are
generally well-known for the Moon, making it an ideal
location to test new approaches to linking
measurements at different wavelengths in anticipation
of applying these techniques to other planetary
surfaces where the relationship is less understood.

We built a predictive model based on the
compositional maps of the Moon derived from Lunar
Prospector data to quantify the relationships between
chemical element concentrations and the surface
albedo. Our goals are to make predictions about albedo
based on the elemental composition and uncover any
possible anomalies that can have roots in the geologic
history of a planet. This provides a way of studying
the Moon with existing data, which is valuable given
the infrequent opportunities for new measurements by
planetary spacecraft. Moreover, the shape and the
location of anomalies on the lunar surface can provide
insights into processes that produced them and their
subsequent evolution.

Datasets: The dataset consists of several maps of
the Moon from the Lunar Prospector Gamma Ray and
Neutron Spectrometer [1]. The element maps include
gamma-ray derived concentrations for Fe (iron), K
(potassium), Th (thorium), and Ti (titanium). The
albedo map was derived from the Lunar
Reconnaissance Orbiter LOLA instrument [2].

Methods: The spatial resolution of the albedo and
element composition maps differ by many orders of
magnitude. To address this challenge, we made use of
an adaptive spatial gaussian blurring technique where
each pixel of the image is blurred proportionally, based
on the 2D projection of the Moon. In particular, pixels
that fall in an X km radius around the target pixel are
used for the blurring. This way, the resolution of the
albedo map can be adjusted to match the resolution of
the element composition maps.

To predict the albedo based on the relationships
between chemical elements composing the surface of
the Moon, we train a machine learning regression
model on a subset of the surface. In particular, the
inputs of the model are the chemical elements and the
albedo is the target. The final best performing model
was the extreme gradient boosting regression model
(the corresponding learning objective is regression
with squared loss, learning_rate = 0.1, n_estimators =
30, max_depth = 5). This model is used to predict the
full albedo (Figure 1), leading to a representative error
map. The error map shows where the relationship
between albedo and surface composition breaks down,
and by extension where albedo is not driven by
geochemistry.

Interactive analyzer: the interactive analyzer1

(Figure 2) displays contours around regions of pixels
whose predicted error value is higher than a given

1 The open source code can be found at
https://github.com/ML4SCI/MLMapper/tree/main/Lunar_Prospector
/ML_for_Planetary_Albedo_Sofia_Strukova
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threshold. The tool allows adjustment of the error
threshold, a minimum area of the regions, as well as
other parameters to configure how the image is
displayed.

The reason behind some of the contours can
already be explained based on some regions that are
darker by default (e.g., crater Shackleton displayed
anomalously high reflectance with regard to the
surrounding south polar region [3]). Many error
contours correspond to young craters and rays,
suggesting a link between error and age (see next
section). Finally, other errors may be linked to
chemistry that is not represented in the Lunar
Prospector dataset used for this study (Fe, Ti, K, and
Th), as these elements make up 20% or less of the total
chemical inventory present at all locations.

Optical Maturity: Optical maturity measures how
long material has been on the lunar surface, exposed to
the harsh space environment. Space exposure can,
among other things, darken a material. Thus, two
chemically-equivalent rocks with a different exposure
age can have different albedo, meaning that bright
material may simply be young. This offers the
possibility of using the error map to identify younger
optically immature materials independently from
previously established techniques, as well as
identifying young surface regions at a spatial scale at
which existing techniques (e.g. crater counting) may
not be reliable.

Discussion: This work can be further used as a
base for predicting relationships between albedo and
chemical composition on other airless bodies in order
to obtain precise results and support ongoing and
future missions. Mercury is a logical location at which
to extend this work. The albedo of the Moon is

generally much lower than that of Mercury, but the
albedo of the lunar maria is similar to that of Mercury,
despite Mercury’s low surface iron centrations [4].
This suggests a more significant role for space
weathering on Mercury, which can be quantified via
application of the machine learning techniques
described here.

Conclusions and ongoing work: We analyzed the
chemical composition and albedo of the Moon using
machine learning methods with the goal of
characterizing the relationship between albedo and
surface chemistry. Because this relationship is well
known on the Moon, this work served to verify the
validity of our machine-learned-based approach. By
making the albedo maps of comparable resolution to
the element maps and removing the spatial resolution
difference, we made the data more comparable for
training and prediction. This was helpful to minimize
potential artifacts that arise from the resolution effects.
Our resulting predicted albedo map, and difference
from the measured abledo, revealed locations where
chemistry is not the dominant effect, for example in
optically immature regions.
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