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Figure 1: Overview of proposed MCA-aided SPACESeg for automated ripple detection

Introduction: The Precambrian geologic record is 

one of the most valuable sources of information for 

developing our understanding of the history and 

distribution of life in our Universe as it archives the 

origins and diversification of life on Earth and, in turn, 

is an image that captures life and its sedimentological 

signatures in the geologic records of other planets [1], 

[2]. Of particular astrobiological interest is the 

terminal Ediacaran Period (574-539 Ma), which, along 

with its preservation of the first macroscopic, 

multicellular animals on Earth, preserves a remarkable 

abundance of organic mats that were ubiquitous in 

Ediacaran seas and played a pivotal role in shaping the 

sedimentological record of the time [3], [4], [5]. One 

key way in which the organic mats of the Ediacaran 

impacted sedimentation was through the stabilization 

of storm-generated ripples on the seafloor which 

prevented the erosion of ripples and led depositional 

events to fill in ripples instead of eroding them as is 

typical in non-stabilized sediments. The result of this 

is a sedimentological record unique to Ediacaran-aged 

rocks that is characterized by stacks of successive, 

discrete bedforms that have ripples on the top-most 

and bottom-most surfaces [5]. This type of bedform, 

here referred to as “Double-Rippled” Bedforms 

(DRBs or “ripples”), therefore, represents a discrete 

and definitive biosignature.  To harness the 

astrobiological and paleobiological potential of DRBs, 

an objective method of remote and automated 

detection and characterization of cross-sectional bed 

junction morphologies of mat-dominated bedforms is 

of significant value. To that end, we recently 

developed “Scene-aware Perception Automation 

using Composite Embedding for Segmentation” 

(SPACESeg) for the recognition of DRBs in images of 

rock cross-sections [8]. To develop this methodology, 

we utilized images from the Ediacara Member of the 

Rawnsley Quartzite in the Flinders Ranges of South 

Australia, because the Ediacara Member is 

characterized by meters of stacked DRBs and outcrops 

extensively throughout the Flinders Ranges region 

[6].  This technique can be leveraged to identify 

fossiliferous rocks in the deeper Precambrian and can 

additionally be translated to remotely recognize 

biologically-mediated sedimentary structures on other 

planets, thereby allowing for the rapid and remote 

detection as well as quantitative classification of 

astrobiologically significant outcrops on other planets. 

This utility aligns with the central goal of the Mars 

2020 Perseverance rover, which is to “seek signs of 

ancient life and collect samples of rock and regolith 

for possible return to Earth” [7], and the SPACESeg 

system can be trained to analyze the images taken by 

Perseverance to recognize the presence or absence of 

the definitively biologically-mediated DRBs.  
Contribution: Improving upon the SPACESeg 

segmentation model for detecting DRBs by adding a 

multi-channel attention module for incorporating local 

and global landscape features for improved overall 

image and scene understanding. 

Technical Approach:  The standard SPACESeg 

algorithm [8] follows a two-step process. The first step 

is unsupervised and generates a saliency map by 

activating relevant regions of importance. This input 

is subsequently given to the next step – a supervised 

deep learning network. The network is guided by the 

saliency at every level of abstraction. This method 

provides excellent results in segmentation [8] against 

variations in many practical imaging conditions and 

the landscape itself. One of the variations here is the 

field of view versus ripple thickness ratio. For our 

dataset, this is a very dynamic value – and thereby 

sometimes causes the method to detect some ripples 

incorrectly. We improve upon this issue of SPACESeg 
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by adding a Multi-Channel Attention block (MCA). 

The MCA is designed to provide information to the 

deep segmentation network (Figure 1) that the 

unsupervised saliency generation module is unable to 

provide. This information is aimed to aid in scene 

parsing. While the network is fairly robust to the 

overall landscape and practical imaging conditions, it 

is noted in [8] that in extreme conditions where we 

have a skewed ratio of field of view versus ripple 

diameter, some details are lost. Thus, the MCA 

generates attention via two channels to provide the 

network with a sense of the scene. This is done by 

calculating first the self-attention of the scene being 

learnt and then computing cross-attention against 

different scenes. We select random patches of the 

training data – one for the image being trained and one 

for a randomly chosen sample. By selecting random 

patches at different zoom and orientation levels, we 

are essentially providing the model with new samples 

of various landscape conditions. Mathematically 

speaking, we compute self-attention between different 

transformations of the sample set and cross-attention 

for different transformations of the population. We 

note that this helps us distinguish the very thin ripples. 

The combined SPACESeg + MCA performs 

segmentation against a robust set of dynamic scene 

variations, imaging conditions and complex artifacts. 

Notably, this model is able to distinguish between the 

shadows and ripples – which are otherwise 

indiscernible due to their very similar feature sets.  

 
Figure 2: Output of proposed (right) and ground truth (left) 

Experiments and Results: We demonstrate the 

importance of this modified algorithm in the case of a 

particularly difficult landscape (Figure 2). Here, the 

field of view captured versus the ripple diameter ratio 

is very high. In that case, we note that a few ripples get 

lost in segmentation due to insufficient learning. Using 

the SPACESeg + MCA, we see that the granularity of 

ripple detection has improved. Comparing with 

SPACESeg, we note that the accuracy increased by 

2%. It is noteworthy is that SPACESeg has high 

performance but lower recall – and adding an MCA 

block improves overall performance over SPACESeg 

with improvement in recall as well. Visually, this 

means we are able to detect ripples more precisely 

while simultaneously rejecting artifacts more 

efficiently. We also show our results compared against 

other models [8] in Table 1.   

Conclusions:  It can be seen qualitatively and 

quantitatively that the MCA module improves upon 

the segmentation of SPACESeg. We note that in 

extreme landscape condition, we are able to detect the 

ripples slightly better with MCA. From an 

astrobiological perspective, the SPACESeg + MCA 

system takes us one step closer in automating the 

process of remote image analysis. It also does so by 

tackling various practical imaging issues. From a 

computational perspective, SPACESeg and MCA both 

can be applied to any model and trained. All of these 

allow for its deployment in remote and translational 

research – thereby creating an opportunity for 

automated analysis of various periods of evolution as 

well as extraterrestrial landscape analysis. 

 ACC PRE REC SSIM 

U-Net 80 (08) 58 (10) 82 (06) 70 (14) 

PSPNet 72 (13) 50 (13) 85 (04) 67 (16) 

SPACESeg 89 (03) 71 (05) 82 (08) 85 (03) 

SPACESeg 

+ MCA 

91 (03) 75 (07) 83 (07) 88 (04) 

Table 1: Quantitative results with the inclusion of the MCA 

module in SPACESeg. Results are reported as mean (std). 

ACC is Accuracy, PRE is Precision, REC is Recall, SSIM is 

Structural SImilarity Metric 
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