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Introduction: Astrophysical models of planet 

formation and protoplanetary disk evolution demand 
precise and accurate timing of the sequence of events 
in the solar nebula, relative to a time t=0, usually taken 
to be during the short epoch of CAI (Ca-rich, Al-rich 
inclusion) formation. Most CAIs formed with live 26Al 
(mean-life τ26 = 1.034 Myr [1]), with an abundance 
26Al/27Al ≈ (26Al/27Al)SS = 5.23 × 10-5 [2]. We adopt 
this as the widespread level of 26Al in the solar nebula 
at t=0. Assuming spatial homogeneity of 26Al, an 
inclusion that had less 26Al, (26Al/27Al)0, formed a time 
Δt26 = τ26 ln [(26Al/27Al)SS / (26Al/27Al)0] after t=0. 
These ages are typical precise to within ±0.1 Myr. 

Igneous bulk meteorites and inclusions can be 
relatively dated by the Al-Mg chronometer, but only if 
Δt26 < 6 Myr. The Pb-Pb system is useful as a longer 
relative chronometer. It yields absolute ages tPb using 
207Pb/206Pb, 206Pb/204Pb, and 238U/235U ratios measured 
in different portions of a sample, assuming certain 
half-lives [4]. These absolute ages are uncertain to 
within ±9 Myr due to uncertainties in the 235U half-life 
[3], but times of formation ΔtPb = tCAI – tPb relative to 
t=0, are more precise (±0.5 Myr), if tCAI can be found. 
Here, tCAI means the Pb-Pb age that would be 
measured in CAIs using the half-lives the community 
typically uses, if they achieved isotopic closure at t=0.  

Unfortunately, direct Pb-Pb dating of CAIs has not 
definitively determined tCAI. Based on four CAIs with 
canonical (26Al/27Al)0, [5,6] found tPb = 4567.30 ± 0.16 
Myr. No other CAI ages with measured 238U/235U have 
been reported in the refereed literature, but there are 
hints of other CAIs with ages tPb = 4568.0 ± 0.2 Myr 
[7] and tPb = 4568.3 ± 0.2 Myr [8]. It is unclear 
whether any of these igneous type B CAIs isotopically 
closed at t=0 or represents tCAI. 

Instead of measurements, we advocate finding tCAI 
by minimizing the discrepancies between the Al-Mg 
and Pb-Pb chronometers. Assuming Δt26= ΔtPb, we find 
the implied t’CAI = tPb + Δt26, then define t*CAI as the 
weighted mean of the t’CAI. t*CAI is the best guess for 
the Pb-Pb age of t=0; the assumption of homogeneity 
is justified if the t’CAI cluster within errors around 
t*CAI. This statistical approach is similar to, but 
improves on, that of [9]. We find t*CAI = 4568.73 ± 
0.16 Myr. Below we discuss our methodology and the 
implications of this age for CAIs, 1.4 Myr older than 
the reported and typically used age 4567.30±0.16 Myr. 

Methods: We base our estimate of t*CAI on five 
achondrites for which published (26Al/27Al)0 and Pb-Pb 
ages exist: the quenched angrites D’Orbigny, Sahara 
99555 (SAH 99555), and Northwest Africa (NWA) 
1670; the pseudo-eucrite Asuka 881394; and the inner 
disk achondrite. All are “NC” (non-carbonaceous) 
achondrites that likely cooled quickly enough that the 
Al-Mg and Pb-Pb systems achieved isotopic closure 
simultaneously. We also considered the “CC” 
(carbonaceous chondrite-like) achondrites NWA 2796 
and NWA 6704, but do not include them in our fit. Al-
Mg and Pb-Pb seem not to have closed simultaneously, 
possibly because formation in the outer disk from 
volatile-rich composition led to slower cooling. Of the 
8 chondrules from NWA 5697 measured by [20,21], 
we also consider the 4 for which 238U/235U was 
measured: 2-C1, 5-C2, 3-C5, 11-C1. Depending on 
their post-formation thermal histories, the Al-Mg and 
Pb-Pb systems in chondrules may or may not have 
closed simultaneously.  

 
Table 1: (26Al/27Al)0, Pb-Pb ages of selected samples 
Sample (26Al/27Al)0 

/ 10-6 
Ref Pb-Pb Ref 

D’Orbigny 3.98±0.15 10 4563.43±0.19♮ 10-
12 

SAH 99555 3.64±0.18 10 4563.88±0.27 12 
NWA1670 5.92±0.59 10 4564.39±0.24* 10 
Asuka 
881394 

13.1±0.56 13-
15 

4564.98±0.17 15 

NWA 7325 3.03±0.14 16 4563.4±2.6 16 
NWA 2796 3.94±0.16 17 4562.89±0.59 17 
NWA 6704 3.03±0.14 18 4562.76±0.26 19 
2-C1 7.56±1.53 20 4567.57±0.56* 21 
5-C2 7.04±1.51 20 4567.54±0.52* 21 
3-C5 8.85±1.83 20 4566.20±0.63* 21 
11-C1 5.55±1.84 20 4565.84±0.72* 21 

*regression based on one subset of data points 
♮weighted mean of two datasets 
 
Pb-Pb ages are proportional to the intercept of the 

line formed by linear regression of 207Pb/206Pb vs. 
206Pb/204Pb data from various washes, leachates and 
residues of acid dissolution of a sample. Because 
contamination by terrestrial or primordial Pb is 
pervasive, some fractions must be excluded from 
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regressions to ensure a fit with acceptable mean 
squares weighted deviation (MSWD).  Usually points 
are excluded based on low [Pb], or low 206Pb/204Pb 
ratio (low radiogenic component), with single outliers 
identified [11,12,15,16,17]. In the starred examples 
(Table 1) and the case of 3 CAI Pb-Pb ages [5], up to 
half the points were excluded solely because did not fit 
a pre-determined line. This approach is vulnerable to 
confirmation bias and produces fits with low MSWD 
and too-low Pb-Pb age uncertainty. Regressing the 
same data points as [10], we reproduce the Pb-Pb age 
of NWA 1670 of 4564.39±0.24 Myr. But selecting 
other combinations of data points, other, equally valid, 
isochrons yield ages from 4563.77±0.21 Myr to 
4564.64±0.23 Myr. Similar arguments apply to the Pb-
Pb isochrons built by [21] for chondrules 2-C1 (we 
find 4567.33±0.44 to 4567.85±0.46 Myr), 5-C2 
(4566.84±0.53 to 4567.70±0.44 Myr), 3-C5 
(4565.84±0.54 to 4567.04±0.54) and 11-C1 
(4565.36±0.51 to 4565.74±0.45 Myr). Our adopted 
ages for these and NWA 1670 are listed in Table 2. 

 
Table 2. tCAI estimated from various components, 
using our regressions for the chondrules & NWA 1670. 
Sample Δt26 

(Myr) 
tPb  
(Myr) 

t’CAI  
(Myr) 

D’Orbigny 5.05±0.04 4563.43±0.19 4568.48±0.19 

SAH 99555 5.14±0.05 4563.88±0.27 4569.02±0.27 
NWA1670 4.64±0.10 4564.21±0.63 4568.85±0.67 
Asuka 
881394 

3.81±0.04 4564.98±0.17 4568.79±0.17 

NWA 7325 5.33±0.05 4563.4±2.6 4568.7±2.6 
NWA 2796 5.06±0.04 4562.89±0.59 4567.95±0.59 
NWA 6704 5.29±0.13 4562.76±0.26 4568.05±0.29 
2-C1 2.00±0.21 4567.59±0.70 4569.59±0.72 
5-C2 2.07±0.22 4567.23±0.91 4569.30±0.93 
3-C5 1.84±0.21 4566.44±1.12 4568.28±1.14 
11-C1 2.32±0.34 4565.52±0.66 4567.84±0.73 
achondrite   4568.72±0.16 
chondrules   4568.76±0.58 
combined   4568.73±0.16 

 
A weighted average of the five NC achondrites (or just 
D’Orbigny, SAH 99555 and Asuka 881394) yields 
t*CAI = 4568.72 ± 0.16 Myr. All are consistent with this 
value to within 1.8σ, and MSWD=1.5. Including the 4 
U-corrected chondrules, t*CAI = 4568.73 ± 0.16 Myr 
with MSWD=1.66, which is statistically significant. 
All chondrules and NC achondrites are consistent with 
this to within 1.8σ, (Figure 1). 
 

Figure 1. Al-Mg formation times after t=0 vs. Pb-Pb ages. 
The five NC achondrites and four chondrules are consistent 
with a Pb-Pb age of t=0 of 4568.7 Myr.   

 
Discussion: The data from achondrites and 

chondrules are consistent with a single Pb-Pb age at 
t=0, justifying the assumption of 26Al homogeneity. 
The age, 4568.7 Myr, is ≈1.4 Myr older than the 
commonly accepted Pb-Pb age of CAIs that formed 
with canonical 26Al/27Al at t=0 [3]. Others have 
interpreted the discrepancy to signify 26Al 
heterogeneity in the CAI-forming region [5, 21]. We 
suggest instead that CAIs were exposed to transient 
heating events that reset the Pb-Pb system without 
disturbing the Al-Mg system. Notably, chondrules 
typically experienced transient heating at these times in 
the nebula [22]. If so, direct measurements of CAIs 
will not yield as reliable a Pb-Pb age of t=0 as 
statistical approaches like this and that of [9]. 
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