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Introduction:  A direct measurement of the 

regolith thermal conductivity at the Mars InSight 
landing site (4.50°, 132.62°E) was made by heating 
experiments using the physical properties package 
(HP3) of the Mars InSight mission [1]. Temperature 
and time data from these heating experiments, after 
removal of background temperature variations,  were 
analyzed using a finite element model for which Monte 
Carlo simulations were run varying regolith thermal 
conductivity, density, thermal contact conductance 
between the probe and the regolith to determine 
parameter combinations that best fit the heating curve 
[1,2].  In terms of simulating details of heating 
experiment this data reduction and numerical inversion 
is as complete as possible within the current 
constraints of the experiment.  However, no 
information was included in the model concerning 
regolith thermal conductivity variations radial to the 
probe caused during penetration of the probe.   

The probe data may also be interpreted using 
analytical methods, such as the line- and cylinder-
source solutions.  These solutions are not capable of 
reproducing structural and thermal property details in 
the probe and they assume that the probe is infinite in 
length.  However, they are simple and quick to 
calculate.  They have an additional advantage that as 
heating time increases, the solutions are influenced by 
thermal conductivities with greater radial distance 
from the axis of the probe. 

Analytical Solution Theory:  For a continuous, 
constant, infinitely long line-source, initially at zero 
temperature, started at time t = 0, the temperature T(t) 
in the medium is given by [3,4]:  
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where q is the strength of the heat source per unit 
length per unit time, K is thermal conductivity, and κ is 
thermal diffusivity. Then 
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where r is the perpendicular distance from the axis of 
the heat source, and 
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is the exponential integral. 
For small values of x, Ei(x) may be expanded as 
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where γ = 0.577216… is Euler’s constant.  The 
boundary conditions for the line source are t = 0, r ≠ 0,     
T (0) = 0; t > 0, r = ∞, T (t) = 0; and t > 0, r → 0, q = 
constant = -2πrK dT/dr. 

When r2/4κt is small compared to one, 
corresponding to temperatures at points close to the 
line heat source and/or large values of time, the 
solution reduces to 
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For a fixed radius r, the temperature rise from T1 to T2 
from times  t1 to t2 is given by  
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or the thermal conductivity is given as 
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where Slope is the gradient of the linear section of the 
plot of temperature vs. ln(time). 

Consider a continuous, constant, infinitely long 
cylinder-source, made of a perfect conductor, initially 
at zero temperature, started at time t = 0, with outer 
radius r = a and heat capacity per unit length of S.  The 
medium outside the cylinder has a density ρ, specific 
heat c, thermal conductivity K, and diffusivity κ = 
K/ρc. The temperature in the medium is T(t) at radius r 
from the axis of the cylinder and is equal to Ta(t) on 
the surface of the cylinder.  Starting at t = 0 heat is 
supplied to the surface of the cylinder at the rate of q 
per unit length per unit time.  There is a thermal 
contact resistance between the perfectly conducting 
cylinder and the medium of 1/H per unit are.  The 
following solution is taken primarily from [3, 5 & 6].  
Heat flux across the outer surface of the cylinder is 

𝐻൫𝑇(𝑡) −  𝑇௔(𝑡)൯ 
The solution is expressed in terms of three 
dimensionless parameters, i.e., 
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For large values of time, the temperature rise of the 
cylinder is given by 
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For large values of time (and large values of τ) the 
temperature rise becomes directly proportional to the 
logarithm of time.   

Intermediate steps have been omitted because of 
requirements of brevity, but for material used in probes 
(cylinders) to determine thermal conductivity of 
insulating materials, such as earth materials, for large 
values of  time (t >> a2/κ or τ) the equation for the 
temperature rise of the probe reduces to 
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By analogy with the temperature rise at a fixed 
radius for the line-source solution 
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or the thermal conductivity is given as 

𝐾 =  
𝑞

4𝜋
ቆ

ln(𝑡ଶ 𝑡ଵ⁄ )

𝑇ଶ −  𝑇ଵ

ቇ =  
𝑞

4𝜋
 𝑆𝑙𝑜𝑝𝑒 

Thus, the equation from which to determine 
thermal conductivity from a plot of temperature versus 
ln(t) is the same for a cylinder-source probe as for a 
line-source probe.  The reason that the analytical line- 
and cylinder-source solutions are the same for long 
times is that as time increases the heating depends on 
the increase in temperature of increasingly large radii 
cylinders of the enclosing medium surrounding the 
probe.  For short time scales the rate of heating is 
controlled by the geometry of the probe and the 
medium immediately adjacent to the probe.  As time 
increases, however, probe geometry and the media 
close to the probe decrease in significance and the rate 
of heating depends only on the far-field geometry and 
the medium in the far-field, which are identical for 
both probe geometries. 

InSight Landing Site Results:  As of January 
2022, four successful HP3 heating experiments have 
been executed to determine regolith thermal 
conductivity at the landing site.  These experiments 
were performed over a period of approximately 273 
Sols (Sol 798 to Sol 1070 relative to landing).  
Thermal conductivity varied in response to 
atmospheric pressure changes affecting gas heat 
transfer in the pore spaces of the regolith, as shown in 
Figure 1 and Table 1.  Results are shown for both the 
detailed numerical analysis and the analytical cylinder 
solution.  The mismatch in these results is certainly 
due to the infinite probe length assumption in the 
analytical solution.   The  error in  this assumption  was  

 
Figure 1.  Plot of measured thermal conductivity 

versus solar longitude.  Results shown are from 
detailed numerical analysis. 

Table 1.  Comparison of thermal conductivities 
derived from detailed numerical analysis (Kcomp) and 
analytical cylinder solution without (Kcyl) and with 
(Kcylcorr) finite probe length correction. 

InSight 
Sol 

Solar 
Lon. ° 

Thermal Conductivity, W/(m K) 

Kcomp err Kcyl Kcylcorr diff 

798 8 0.0388 0.0011 0.047 0.04 0.0013 

827 22 0.0392 0.0010 0.047 0.04 0.0010 

874 44.2 0.0397 0.0010 0.048 0.041 0.0008 

1070 135.3 0.0366 0.0010 0.042 0.035 -0.0017 

calculated to be slightly <1% for L/a = 25, where L is 
the probe half-length and a is its radius and negligible 
for typical experimental measurements for L/a = 30 
[7].  For the HP3 probe L/a  ≈  7.5 indicating a 
significant error in the infinite length assumption.  A 
commercial finite element program, COMSOL®, has 
been used to calculate the difference in thermal 
conductivities calculated using the analytical cylinder 
solution for data sets created for probes of L/a ratios.  
This work is continuing but preliminary results suggest 
that the correction for the HP3 probe should be ~-0.007 
W/(m K).  This preliminary correction has been 
applied to the analytical results in Table 1 and brings 
the analytical results to within 0.002 W/(m K) of the 
detailed numerical results. 
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