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Introduction: Magnetic fields have been detected at
asteroids Gaspra [1] and Braille ( 2 nT) [2]. While these
are S-type asteroids and the detections are weakened by
other factors, 5% of the main-belt is comprised of M-
type asteroids that may have significant magnetic fields.
These asteroids, constituted primarily of Nickel and Iron,
are thought to be exposed planetesimal cores [3]. A pre-
historic dynamo could have caused a magnetic field to
be locked into the cooling material. Scheinberg et al. [3]
have studied the evolution of the dynamo during solid-
ification, particularly in the context of the asteroid Psy-
che. The Psyche mission will carry a magnetometer to
its eponymous asteroid. On-going simulation work has
modeled the plasma environment around Psyche with
magnetic fields ranging from 0-500nT [4]. Additionally,
it is natural to assume that metallic asteroids will also
be subject to the disruption and re-accretion processes
that is thought to produce rubble pile asteroids from other
taxonomic classes. Thus, metallic asteroids may exist in
various sizes and magnetic field strengths.

Previous work by Scheeres et al. [5] showed that the
van der Waals cohesion is a significant force between
grains on traditional (non-metallic) asteroids. Subse-
quently, Sanchez and Scheeres [6, 7] worked on the in-
fluence of the cohesive force towards the evolution of
rubble-pile asteroids. The surface morphology of the re-
golith is influenced by the dominant force [8].

The regolith on M-type asteroids with embedded
magnetic fields will experience another cohesion-like
force due to the magnetic forces between particles. This
force may be attractive or repulsive. Since cohesion has
been hypothesized to significantly influence the surface
morphology of asteroids, we hypothesize that magnetic
forces will similarly influence the morphology of metal-
lic asteroids with embedded magnetic fields. We present
results showing the size of particles where the magnetic
attraction between particles is equal to the weight of a
particle, for varying gravity, magnetic field strength and
magnetic susceptibility. We also present an empirical fit
that enables users to quickly compute the magnetic force
between identical particles, reducing the need to imple-
ment complicated and computationally costly magnetic
multipole models.

Magnetostatic Problem: Paramagnetic particles
placed in a uniform magnetic field develop an induced
dipole moment. The differential equations for the
magnetic interactions between particles involve the
Laplace equation. By applying appropriate boundary
conditions, a solution can be generated.

Laplace’s equations for a system of N paramagnetic
spherical particles in a uniform magnetic field H0 with-
out any free currents are [9]

∇2ϕout = 0 (1)

∇2ϕ
(n)
in = 0 (2)

where ϕout is the scalar magnetic potential outside the
particles and ϕin being inside the particles. For a spheri-
cal co-ordinate system defined at the center of nth sphere
such that rn = x − Xn with rn = |rn|, the boundary
conditions are

ϕ
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in = ϕout (3)

µ
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∂rn
= µ0

∂ϕout

∂rn
(4)

at rn = a for each n = 1, 2 where rn is radial coordinate,
a is particle radius, µ0 is the free space permeability and
µ is the particle permeability. Additionally, as rn → ∞

ϕout → H0 · rn (5)
The general solution to Laplace’s equation for a

spherical geometry is the sum of spherical harmonics.
Four different models are considered to solve for the
magnetic force between particles.

Fixed Dipole Model (DM): Consider a single spher-
ical particle in a uniform magnetic field; the particle is
uniformly magnetized. In this model, only this magneti-
zation of a single particle in a uniform magnetic field is
considered. The interaction terms between the particles
are neglected.

Mutual Dipole Mode (MDM): In this model, on top
of the magnetization due to the external magnetic field,
the magnetic field due to all other magnetized particles
is also considered. The dipole moments of each particle
are iterated until they converge.

While the MDM solves the interaction between the
particles, the effect of higher-order multipole terms is
still not included. Both DM and MDM diverge from the
exact solution, particularly at low separation distances.
To include the higher-order multipole terms, we need to
solve Laplace’s equations.

Finite Volume Method (FVM): Laplace’s equations
with the applied boundary conditions can be numeri-
cally solved through a finite volume method [10] us-
ing a smoothed µ approximation. This method exactly
solves for the magnetic field without neglecting har-
monic terms. However, it is computationally expensive
and was only used to benchmark simpler methods.

Spherical Harmonics Solver: The models were com-
pared for a two-body magnetostatic problem. A spherical
harmonics solver [11] is used to obtain the exact solu-
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tion. By terminating the sum of spherical harmonics up
to finite multipoles ‘L’ and applying the Hobson formula,
we arrive at a 2L × 2L linear system of equations. The
solution to the linear system provides us the scalar poten-
tial ϕout and therefore, the contribution of the magnetic
field from the particles by taking the gradient. The force
between the particles is then computed using Maxwell
stress tensor:

T = µ0

(
HH− 1

2
H2I

)
(6)

Fn =

∫
Vi

∇ ·T dV (7)

where Fn is the force experienced by particle n and Vi is
the total volume of particle i.

The DM and MDM models require very little com-
putational power and run time but fail at low particle
distances. FVM, while providing good results for the
whole range of separation distances, requires high com-
putational time. Therefore, an empirical model of force
between two particles is developed.

Emperical Model: The force between identical two
spherical particles in a uniform magnetic field is depen-
dent on the following parameters: magnitude H0 and di-
rection of applied magnetic field Ĥ0, particle radius a,
separation distance c, and particle volume magnetic sus-
ceptibility χ. Looking at the formulation of the solver,
we can conclude that the force between the particles is

F ∝ a2H2
0 (8)

Two special cases are considered separately for applied
magnetic field direction: magnetic field parallel and per-
pendicular to the line joining the particles. Finally, based
on the data set prepared through the spherical harmon-
ics solver, empirical formulas for separation distance (ex-
pressed in particle radius) and magnetic susceptibility are
developed. The data is fitted for the equation

F = FDM + µ0H
2
0a

2
3∑

i=1

pi
c4+i

(9)

where FDM is the force between particles when only a
fixed dipole model is considered and parameters pi are
dependent on susceptibility. As relation to H0 and a are
known we generate data with both assumed to be unity.
Then, the separation data for each susceptibility is fitted
on equation 8 to get parameters. Based on the curve of
each parameter pi vs susceptibility χ, either an exponen-
tial or a polynomial function is fitted for each parameter.
The empirical model is also tested for extrapolated data
with R2 value within 0.95-1.00 for all cases.

Meteorite Data: Kohout et al. [12] measured bulk
magnetic susceptibility and bulk densities for over 700
meteorite samples. The volume magnetic susceptibility
range for stony-iron and iron meteorites is 5-150. We
generated 5-100 susceptibility data to fit the function and
checked for extrapolation for 0.05-5 and 100-150.

Figure 1: Radii of surface particles for ambient weight equal to
magnetic force as a function of ambient G. (assumed magnetic
field & particle density are 500 nT & 4 g/cm3 respectively)

Conclusions: The bond number (ratio of cohesive
force by particle weight) for the magnetic cohesive force
between two identical spherical particles with radius r in
contact is given by

Bm =
µ0H

2
0

ρga
f (χ) (10)

where ρ is the particle density, g is ambient gravity and
f (χ) is the function of magnetic susceptibility (different
for parallel and perpendicular magnetic field direction
cases). This provides a means to characterize magnetic
force extending the work in [5] (Fig. 1). The empirical
model facilitates quick calculation of force between par-
ticles at close distances. For larger separation distance
MDM is used. This combination enables us to perform
discrete element method (DEM) simulations with multi-
ple particles of various sizes in low-gravity, low-pressure
environment of asteroids to investigate the role of mag-
netic cohesion in regolith on such asteroids.
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