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Introduction: In December 2020, the China Na-

tional Space Administration’s Chang’e 5 mission re-

turned ~1.73 kg of regolith from the northern Oceanus 

Procellarum region of the lunar nearside, marking the 

first return of new samples of the Moon since 1976. The 

first studies of these samples [1-4] reveal that the terrain 

at the landing site is dominated by basalts that date to 

~1.96 Ga [1]. This makes the Chang’e 5 samples now 

the youngest dated igneous rocks from the Moon and 

surpass the previously youngest known basalts by ~1 

billion years [e.g., 5-7]. Therefore, these samples offer 

an unprecedented opportunity to examine the thermal 

and magmatic evolution the Moon though time. 

One of the myriad questions that can and will be ad-

dressed by studying the Chang’e 5 basalts is, what are 

the conditions of melting in their mantle source? By 2 

Ga, the Moon had cooled significantly and the quantity 

of melt generated, as evidence by the ages of surface 

flows [e.g., 8], had diminished significantly. Magma-

tism at 2 Ga or younger is primarily confined to Procel-

larum KREEP Terrane (PKT) [8], which strongly sug-

gests a linkage between the enrichment of heat-produc-

ing elements in KREEP and sustained lunar magmatism 

[e.g., 9-11]. Secular cooling of the Moon would presum-

ably favor the melting of mantle lithologies with lower 

melting temperatures, such as Fe-Ti-rich cumulates pro-

duced late in lunar magma ocean (LMO) crystallization, 

but this has yet to be supported with sample data. The 

mantle source region(s) of the Chang’5 basalts poten-

tially offers a key constraint on the temperature at a cer-

tain depth in the lunar mantle at ~2 Ga, as well as insight 

into the composition of LMO cumulate, or hybridized 

cumulate, that melted to produce the basalts.  

High pressure and temperature experiments on near-

primary melt compositions (i.e., melts that have experi-

enced little compositional alteration post-extraction 

from their source) have long been used to examine the 

P-T-X conditions of planetary mantles, including for the 

Moon [e.g., 12]. For such melts, the P-T of multiple sat-

uration on the liquidus reveals the conditions of melting 

and the phases in the residual mantle (assuming there 

was more than one). Traditionally, the Chang’e 5 basalts 

would be thought to make poor candidates for such ex-

periments, as they are Fe- and Ti-rich, which is usually 

interpreted as the product of fractional crystallization af-

ter source extraction. This is indeed one of the prelimi-

nary interpretations for the Chang’e 5 basalts [4]. How-

ever, at 2 Ga, melting of an evolved, Fe- and Ti-rich 

source region is equally plausible given the Moon’s 

waning heat sources and melt production [11, 12]. We 

have undertaken high P-T experiments on a potential 

liquid composition for the Chang’e 5 basalts in order to 

determine potential source region characteristics, condi-

tions of melting, and petrogenetic history.  

Determining a Liquid Composition: Experiments 

investigating the high-P-T liquidus mineralogy of a bas-

alt with the goal of assessing the characteristics of its 

source region and/or the conditions of melting rely on 

the accurate determination of the parental melt compo-

sition to a suite of basalts. To determine the composition 

that best approximates a parental liquid for the Chang’e 

5 basalt suite, we first calculated an appropriate olivine-

melt Fe-Mg exchange KD for each of the basalt compo-

sitions reported by Tian et al. [4] using the expression 

from Toplis [13]. The KD values ranged from 0.28 – 

0.35. We then compared the Fe-Mg exchange KD calcu-

lated using the composition of each basalt fragment and 

the highest Mg# olivine composition reported for that 

sample and compared it to the KD from Toplis [13]. Two 

samples, 103-001,005 and 103-011,011, produced KD 

values in agreement with their calculated KD. Next, we 

took the most magnesian olivine composition from any 

sample reported by Tian et al. [4], Fo59.4, and calculated 

the Mg# of a liquid in equilibrium with that olivine. The 

Mg# of 29.4 for sample 103-001,005 is in excellent 

agreement with this olivine. Therefore, we selected the 

composition of 103-001,005 for our experimental and 

numerical modelling starting composition.  

Experimental Methods: We synthesized an exper-

imental starting composition based on Chang’5 sample 

103-001,005 using reagent grade oxides and fayalite. 

Synthetic fayalite was used as an Fe reagent to ensure 

that all Fe in the mix was divalent. The mixture was ho-

mogenized under ethanol in an agate mortar and pestle, 

and once dry, was stored in a desiccator. Piston cylinder 

experiments were conducted in the Florida Planets Lab 

at UF using graphite capsules and BaCO3 pressure me-

dia in a Rockland Research Corp. end-loaded piston cyl-

inder. Future experiments will utilize pure Fe capsules 

to better constrain the effects of fO2 on the liquidus 

phase relations of this composition [14]. Preliminary 

runs have been conducted at 0.5 and 1 GPa, and each 

run utilized a super-liquidus step for 20 minutes to en-

sure melting and homogeneity. Run durations were ~24 

hours. Run products were then mounted in epoxy and 

polished flat for microbeam analyses.  
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Modeling: The equilibrium P-T phase diagram for 

Chang’e 5 basalt 103-001,005 was predicted using 

Gibbs free energy minimizations via Perple_X [15] for 

comparison to the experimental results, and as part of a 

more expansive study of phase equilibrium software and 

multiple saturation point (MSP) conditions [see 16]. 

Calculations were performed in the KNCFMASTCr 

system at the IW buffer using appropriate solid solution 

models and a suitable thermodynamic dataset [17-19].  

Preliminary Results and Interpretations: The 

equilibrium phase diagram for sample 103-001,005 pre-

dicted by Perple_X (Fig. 1) is in good agreement with 

the preliminary results of our experiments (Fig. 2), with 

the exception ilmenite stability. Perple_X greatly over 

estimates the temperature of ilmenite saturation; how-

ever, it is broadly successful at estimating silicate phase 

relations for planetary basalts [see 16].  

Our preliminary results suggest a number of possi-

bilities for the mantle origin of the Chang’e 5 basalts. 

The phase diagram predicted by Perple_X (Fig. 1) 

shows a region near the silicate liquidus (exclusive of 

ilmenite) where multiple phases, namely olivine, OPX, 

CPX, and plagioclase saturate over a small P-T space. 

The experimental results suggest ilmenite saturates near 

the liquidus as well (Fig. 2). This phase assemblage is 

in broad agreement with the mineralogy produced by 

late-stage LMO crystallization. The approximate depth 

of this region is ~80-130 km in the lunar mantle, and 

this could be interpreted as the depth of origin for the 

Chang’e basalts if an evolved, Fe- and Ti-rich source 

with a low melting point is favored. The retention of 

more than two minerals in the mantle source would also 

point toward a low degree of partial melting. Alterna-

tively, the saturation of multiple phases near the liquidus 

at relatively low pressure could indicate the effects of 

fractional crystallization post-extraction from the 

source [e.g., 4]. In the latter case, a more mafic source 

region at deeper depths would represent the Chang’e 5 

basalt source. The former model, however, would point 

to the effects of heat from the PKT in melting the rela-

tively shallow mantle without mass transfer from 

KREEP [9-11], as the trace element and isotopic sys-

tematics of the Chang’e 5 basalts do not suggest direct 

involvement from KREEP in the melt [4]. Further ex-

perimentation and trace element modelling will aide in 

our interpretation of the mantle source for the Chang’e 

5 basalts, the conditions of its melting, and the extent to 

which fractional crystallization has played a role. 
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Figure 1: An equilibrium P-T phase diagram for the composi-

tion of the 103-001,005 basalt returned by Chang’e 5 calculated 

using Perple_X.. Ilmenite saturation is over-predicted in this 

model. Small red areas are calculation errors that do not affect 

the results.  

Figure 2: A preliminary equilibrium P-T phase diagram for the 

composition of the 103-001,005 basalt returned by Chang’e 5 

determined with piston cylinder experiments. An estimated sol-

idus and liquidus are included. HCP and LCP: High and low-

Ca pyroxene. Plg: Plagioclase. Ilm: Ilmenite.  
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