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Introduction:  Today, liquid water is generally un-

stable on the surface of Mars. However, Mars’ surface 

pressures can vary widely depending on elevation, 

with atmospheric pressures reaching >10 mb in low-

lying features like Lyot Crater (~-7000 m; [1,2]) com-

pared to its average surface pressure of 6.1 mb. The 

effect of these higher pressures may have been record-

ed in gully system morphology [2].  

This study examines two gullied craters at different 

elevations to investigate the effect of altitude on gully 

morphology. These sites include Moni Crater (47.01°S 

18.77°E; ~1140 m elevation) and a ~13-km unnamed 

crater in Utopia Planitia (“N Crater”, 48.44°N 89.39°E; 

~-4600 m elevation). 

 
Figure 1. Comparison of high-elevation Moni gullies (a) and 

low-elevation N Crater gullies (b). Moni imagery from 

HiRISE image ID ESP_039245_1325, N Crater imagery 

from HiRISE image ID ESP_037646_2290. 

Methods: The study areas selected for detailed 

morphometric analysis in this project represent craters 

that are at similar latitudes (~±48 degrees), with gullies 

that have a similar orientation, and also have suitable 

HiRISE DTMs. Following the selection of two study 

sites, 3 distinct pole-facing gullies and 2 west-facing 

gullies were selected from each crater, giving a sample 

set of 5 low-elevation (~-4600 m) gullies and 5 high-

elevation (~1100m) gullies. 

Drainage maps of these 10 gullies were produced 

in ArcGIS Pro using HiRISE images, the associated 

DTM, and a hillshade generated from this DTM to 

determine various morphometric parameters. Addi-

tionally, elevation data is used to examine the profile 

of the center stream line (CSL, the longest and deepest 

channel) and the slopes of the gully. 

Results: The gully systems are on average 0.932 

km long for the N crater and 0.956 km for Moni. The 

N Crater incised the bedrock more deeply, with a max-

imum depth of ~50 m compared to ~5 m at Moni. The 

lower-elevation N Crater site also had more sinuous 

channels with an average sinuosity index of 1.052 and 

1.037 for Moni. The sinuosities at both sites are higher 

for the pole-facing gullies than the west-facing gullies 

(Moni: 1.044, 1.027; N Crater: 1.054, 1.050; pole-

facing and west-facing respectively). Additionally, the 

N Crater shows a higher stream magnitude than Moni 

(average Shreve order ~13.4 and ~12.6 respectively), 

but less overall development with lower Strahler orders 

(average Strahler order ~2.8 and ~3.2 for N Crater and 

Moni respectively). 

Slope analysis: Several slope parameters were 

measured within the gully system: the erosional alcove 

slope, the apex (or transitional channel between ero-

sion and deposition), and the depositional apron. Al-

cove slopes for N Crater gullies are larger than for 

Moni (average ~19.2° and ~14.1° respectively). How-

ever, they do not have distinct apex slopes. The N 

Crater does have an exceptionally high-slope gully, 

with an alcove slope of 24.9° and an apex slope of 

20.0°. 

 
 

Figure 2. Comparison of alcove and apex slopes of studied 

gullies. The red line represents the apex angle required to 

prevent dry flow deposition, ~21° [5]. 

Long profile analysis: The topographic long profile 

is a measure of the elevation change with downstream 

distance. These measurements show a large variance in 

CSL profile concavity among the measured gullies. 

Generally, there is poor separation between gullies at 

each site, though the west-facing gullies in both craters 

show a straighter profile. The gullies at the high-

elevation site are steeper in their upper section then 
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shallow downstream. One notable stream line is found 

on the west wall of the low-elevation site; its profile 

shows a shallow linear upper slope, then a highly con-

cave downstream section. 

 
Figure 3. Normalized long profile concavity plot for studied 

gullies. The dashed line indicates a flat profile. 

 

 
Figure 4. Long profile elevation plot for studied gullies. This 

style of chart highlights the gully lengths and changes with 

elevation. 

Conclusions: N Crater: The low-elevation site in 

the Northern hemisphere has extensive evidence for 

the presence of past subsurface water ice, such as scal-

loped sublimation features, polygonal terrain [3], and a 

lobate ejecta blanket, which could have provided a 

water source during the formation of these gullies. 

Profiles across the channels are V-shaped with flat 

floors, suggesting initial fluvial erosion and subsequent 

infilling of the channel. Gully aprons show distributary 

channels all across their surface, while the overall gul-

ly system has concave long profiles and tributaries 

have moderate stream orders, supporting a fluvial 

origin. These gullies deposit at low angles, far below 

the angle of repose for dry materials (~35°, [4]) and the 

angle for kinetic friction (>21°, [5]) with the exception 

of one gully. Different alcove textures and superim-

posed fans suggest post-emplacement debris flows or 

mass-wasting, which may explain why some gullies 

have high slopes incongruous with other gullies of the 

same orientation.  

Moni: Our measurements correspond to conclu-

sions made by Glines et al [6], which suggests that the 

gullies in Moni were formed by liquid water flows. 

Similar to [6], we observed concave channels on low 

slopes, branched development, and volatile loss. 

Summary: The intention of this study was to inves-

tigate the effect of elevation on gully morphology due 

to the increased stability of water at higher atmospher-

ic pressures. As both sites indicate the presence of liq-

uid water during the gully emplacement process, it is 

unlikely that elevation solely contributed to the for-

mation of the gullies and their morphology.  

There appears to be more variation within the gully 

sites themselves than between them. Morphologically, 

we see different complexities and networking of chan-

nels between the pole-facing and west-facing slopes, 

which implies that insolation and heating angles has a 

larger effect on these gullies than elevation alone. 

However, the stronger overall development of 

channels in the N Crater, evidenced by high concavi-

ties and stream orders as well as increased bedrock 

incision, suggest that liquid water flow played a larger 

role at this site compared to Moni. At its lower eleva-

tion, liquid water could have been stable for longer at 

the N Crater site, affecting these morphologic parame-

ters. 

Future work: Sample sites with extreme elevation 

differences were chosen to best capture how this dif-

ference affects gully morphology. This means that cra-

ters in dramatically different geologic environments 

were used, which may control the gully morphology 

more strongly than elevation alone. One interesting 

site, Nqutu Crater (38.04° S, 169.55° E; [7]), contains 

gullies at different altitudes within the same crater. 

This may provide an interesting study site as these 

gullies formed under the same geologic and climatic 

conditions. 

Additionally, only a very small sampling of 10 gul-

lies among thousands on Mars were chosen. A larger 

sampling would reduce unintentional sampling biases 

as well as diminish the effect of regional geology on 

morphologic comparisons.  

Future work should expand these methods and ex-

amine other morphometrics such as gully volume dif-

ferences, alcove and apex slopes, as well as surface 

temperature and pressure conditions through TES and 

surface temperatures using THEMIS. 
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