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Introduction: Mineral detection using 

hyperspectral data is typically achieved through 
matching the position, strength and shape of diagnostic 
absorption bands of remotely acquired data with 
laboratory reference spectra. While successful on one 
level, presence/absence detections on the basis of band 
position alone fails to get the most possible information 
from these data.  Specifically, these approaches do not 
do well: when multiple mineral phases are present in the 
same pixel,  when important minerals are present at 
concentrations <15%, accommodating the spectral 
diversity of laboratory spectral libraries, and in the 
presence of instrumental and calibration artifacts and 
noise [1]. This can be particularly difficult when using 
data from the visible to near-infrared (VNIR) (0.4-1.1 
µm) wavelengths on Mars where absorption due to the 
presence of fine-grained ferric oxide minerals are 
extremely strong and mask the presence of other 
materials.   

In this analysis we apply Factor Analysis/Target 
Transformation[2], a novel big-data mineral detection 
method previously used with orbital CRISM data[3–5] , 
to test for the presence of minerals along the Curiosity 
traverse in Gale Crater using ChemCam passive 
reflectance data[6,7]. These are particularly challenging 
data as there are few uniquely diagnostic absorption 
features in this wavelength range and due to the strong 
influence of ferric oxide absorptions arising from dust.  
Nevertheless, this is the first application of factor 
analysis/target transformation (FATT) to point spectra 
acquired from a rover platform to assess the capabilities 
of FATT to identify spectral properties from ChemCam 
data consistent with laboratory minerals.   

Methods: ChemCam data, calibrated to reflectance 
by Jeff Johnson as part of a PDART, covering the first 
2,075 sols of the MSL mission [8] were downloaded 
from the PDS Geosciencde node.  From these data, only 
passive reflectance observations of geologic targets 
rocks, outcrops and soils were extracted for analysis.   

The data were then put into three mission phases for 
analysis: Bagnold Dunes [9], Stimson and Murray/Vera 
Rubin Ridge. We used the target definition to select 
ChemCam spectra for rock or soil targets, including 
veins, drill holes and tailings and brushed sites. Each 
mission phase was analyzed separately and results were 
compared to related literature[9–11].   

We used RELAB spectra from the CRISM spectral 
library as candidate target spectra.  This included 49 
oxide, 144 inosilicate, 107 nesosilicate, 128 

phyllosilicate, 24 sulfate and 74 carbonate spectra. The 
spectral library was clipped and resampled to the 
wavelength range and spectral sampling of ChemCam 
passive reflectance data for accurate comparison.  

The complete suite of spectra for each phase were 
then processed using the FA/TT that consists of two 
steps: 1) Factor analysis and 2) Target transformation. 
Factor analysis was first applied to the ChemCam data 
to generate a suite of eigenvectors determined from the 
covariance matrix using the HYSIME algorithm [12].  
The first 8 eigenvectors were then used as inputs to the 
Target Transformation. This subset of the eigenvectors, 
explaining the most variance in the data, are linearly fit 
to a library spectrum of a mineral of interest (e.g.[1] ).  
Goodness of fit determined by the Root Mean Square 
Error (RMSE) of the eigenvectors fit to the laboratory 
spectra is the first metric used to reject or provisionally 
accept a fit.  We use an (RMSE) threshold of of < 10-5 
in this analysis.  The spectra that meet the first criteria 
are then inspected visually to assess the quality of the 
fit.  A subset of these is then analyzed in detail. A 
positive fit suggests there is a good probability that a 
spectral signature comparable to the laboratory 
spectrum is a spectral component in the ChemCam 
observation.   

Results: The three campaigns result in some very 
strong fits of the FATT method to laboratory spectra and 
the best laboratory-FATT fits change with the 
campaigns.    

  

 
Figure 1: FATT fits to ChemCam spectra from the Bagnold Dunes 

campaign. The upper left shows all the input spectra, upper right 
shows a high quality fit to a pyroxene spectrum from the RELAB 
database with RELAB ID, lower left fit to an olivine spectrum from 
RELAB and lower right the fit to a saponite RELAB spectrum.  
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Figure 1 shows the fits to the ChemCam spectra from 
the Bagnold Dunes campaign. The quality of the fits are 
very good (RMSE<10-5). The example fits to the 
pyroxene and olivine show an envelope of stochastic 
noise that is quite a bit larger than for the saponite fit.  
This is likely due to the very different dynamic range of 
the laboratory spectra. The saponite spectrum has a 
dynamic range of 46% reflectance while only 12% and 
17% for the pyroxene and olivine respectively.  Both the 
pyroxene and olivine spectra show spectral features 
distinct from the typical ChemCam spectra in this suite.  

There were a number of good fits to the Stimson 
campaign. However, in general the laboratory spectra 
that showed excellent fits were to materials that are not 
known to exist along the Curiosity traverse (e.g.[13] ) 
such as diaspore. The laboratory spectra of these 
materials generally show a smooth spectrum rising from 
≈400 nm to ≈750 nm, similar to the saponite example in 
Figure 1. Laboratory spectra with similar characteristics 
commonly results in fits that meet the RMSE threshold.  
We do not consider these types of fits to be compelling 
for followup.  

FATT fits to the Upper Murray and Vera Rubin ridge 
campaigns show a new set of laboratory mineral spectra 
that provide excellent fits (Figure 2).  Here we find iron 
oxides such as akageneite, hematie and goethite easily 
meet the RMSE threshold. Furthermore, ChemMin 
analyses show that hematite and akageneite are known 
to exist on Vera Rubin ridge [Rample et al, 2019].   

Discussion: Detailed spectroscopic analyses of 
ChemCam data in coordination with MastCam and 
mineralogic analyses have shown that absorption 
features and spectral parameters characteristic of mafic 
silicates (e.g. olivine) and iron oxides (e.g. hematite) are 
observed along the Curiosity traverse [9,10].  This pilot 
study applying the FATT method has shown that full 
spectral resolution characteristics of olivine, pyroxene, 
and iron oxides can be isoloated from the ChemCam 
data. At the same time, we have found that many 
laboratory reflectance spectra show similarly high 
quality fits, like diaspore, but are likely not present on 
Mars and have not been detetected by other approaches 
or in meteorites.  False positives are a known limitation 
of FATT techniques [1].   

We are now following up the more promising 
ChemCam detections to isolate the same features in 
ChemCam data not processed by factor analysis.  
Among the more interesting is the detection of goethite 
in the Vera Rubin ridge suite of ChemCam data (Figure 
2).  While this mineral was not detected in the CheMin 
data (e.g. [13]) many alteration pathways to hematite 
include goethite as an intermediate step, which would 
inform the chemical conditions at the time of formation. 
Our work shows the robust applicability of FATT to 

point spectrometer datasets and can be used to analyze 
future datasets to provide additional granulatiry in 
remote spectral compositional analyses.  In the future, 
we will test out the approach on publically released 
SuperCam data obtained in the Jezero landing site using 
a broader wavelength region with more diagnostic 
absorptions.    

 

 
Figure 2: FATT fits to ChemCam spectra from the Upper Murray  
and Vera Rubin ridge campaign. The upper left shows all the input 
spectra, upper right shows a high quality fit to a akaganeite 
spectrum from the RELAB database with RELAB ID, lower left fit 
to an hematite spectrum from RELAB and lower right the fit to a 
goethite RELAB spectrum. 
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