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Introduction:  The Apollo Lunar Surface 

Experiment Package (ALSEP) recorded lunar seismic 

activity continuously between 1969 and 1977 [1]. 

These seismic data provided observations of deep 

moonquakes (DMQs) manifest as repeating tidally-

linked signals from sources located in geographically 

tight regions, called nests. Sources from the same nest 

have similar waveforms that are distinct from events 

originating in other nests. Here we explore the 

potential of machine learning algorithms such as 

convolutional neural nets (CNNs) to differentiate 

between the multiple DMQ event hypocenters. 

Background: The ALSEP comprised 4 seismic 

stations placed on the near side of the moon between 

1969 and 1972, and continuously collected seismic 

data and transmitted it in real-time back to Earth until 

instrument shut-off in 1977 [1]. In that time, the 

network detected approximately 12,000 seismic events, 

the most numerous of which are deep moonquakes on 

the long period seismometers. Deep moonquakes 

(DMQs) are repeated lunar seismic events occurring at 

focal depths between 800 km and 1200 km [2]. These 

events originate from 319 source regions, or clusters, 

and are observed to have 13.6-day, 27-day, and 206-

day periodicities, indicating that the build-up and 

release of tidal stresses caused by the interaction 

between the Earth, Moon, and Sun play a role in the 

DMQ source mechanisms [3]. DMQ events have been 

valuable for determining lunar interior structure, as 

their arrival times can be used to derive mantle P- and 

S-wave velocities[4] and other body waves, such as 

core reflections [5]. 

The identification and classification of events in the 

ALSEP data was initially conducted using visual 

inspection of day-long seismograms [1]. 

Computational advancements have enabled the 

application of new techniques that identified more 

DMQs: a combination of waveform cross-correlation 

and cluster analysis positively identified 5905 new 

moonquakes and 88 new DMQ nests [6], and a cross-

correlation algorithm combined with an algorithm to 

de-glitch Apollo data resulted in 123 new events for 

the A1 DMQ cluster alone[7]. The Apollo seismic data 

is difficult to analyze because of low signal to noise 

ratio and instrument glitches that create spikes and/or 

gaps in the data time series. 

Current work: Previously, we used a 

convolutional neural net (CNN) to identify and classify 

deep moonquake data. DMQ events from clusters A1 

and A8, identified in the most recently updated lunar 

seismic event catalog [7, 9] and recorded on the Apollo 

12 long period (LP) three-component seismometers. 

Spectrograms were made from these events and used 

to train several image classification CNNs to identify 

the difference between an A1 and an A8 DMQ.  

Seven different models were trained and tested on 

the spectrograms; despite various modifications to the 

CNN architecture, the validation accuracies of the 

CNNs do not increase beyond 70.1% as shown in 

Figure 1, indicating that the algorithms are not learning 

effectively. These results imply that image classifier 

CNNs are inefficient with spectrograms; therefore, a 

one-dimensional approach might work better.  

 

 
Fig. 1. Validation accuracies of 7 different CNN 

models tested and trained on the spectrograms of A1 

and A8 DMQs, which do not increase beyond 70.1%.  

 

To test a 1D CNN,  a synthetic dataset of events 

from the two largest DMQ clusters A1 and A8 was 

made using a lunar velocity model and calculated 

cluster locations, for a detection location at the Apollo 

12 seismic station. The traces of these seismic events 

were used to train a 1D CNN, with significantly better 

results: the CNN’s training and validation accuracy 

both increase and then plateau at 90% as shown in 

Figure 2.  

Proposed Future Work: The 1D CNN initially 

tested on the synthetic seismic traces will be trained 

and tested on the time traces of the A1 and A8 events 

from the Apollo data. The 1D CNN approach could 

also be used on the spectral domain of the seismic 

event data, including both amplitude and phase, in 

order to help distinguish between the spectra of A1 and 

A8 events. This technique could have the potential to 

discriminate more efficiently than an image-

classification CNN strategy trained on spectrograms, 

which only observed the amplitude aspect of the 
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spectra without looking at the phase elements. This 

could also gain insight into the relative importance of 

amplitude and phase information in classification 

performance.  

Significance: Using a CNN to identify the spectral 

differences between the events in the A1 and A8 DMQ 

clusters (which are the largest and most varied 

identified clusters) is a first step in applying machine 

learning algorithms to the rest of the DMQ catalog. If 

able to successfully classify different deep moonquake 

nests, a CNN approach could be used to assess whether 

events need to be regrouped or reclassified and could 

be used in the future as part of an automated approach 

to identify new deep moonquakes in a future Lunar 

Geophysical Network or Artemis astronaut deployed 

seismometer station. 

 

 
Fig. 2. Validation and testing accuracies and losses of 

the 1D CNN model tested and trained on the time 

series of synthetic data modeling A1 and A8 DMQs.  
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