APPLICATION OF AN EMPIRICAL DARK [SHADOW] SUBTRACTION METHOD TO CRISM VNIR+IR DATA AS A SUPPLEMENTAL METHOD FOR SPECTRAL ANALYSIS OF THE SURFACE. L.L. Tornabene¹, V. G. Rangarajan¹, F. Seelos², S. Douté³, G. Munaretto⁴, C. Viviano², P. Grindrod⁵ J. Piatek⁶, J. Wray⁷, A. Pommerol⁸, M. Pajola⁴, and A. Luchetti⁴, ¹Inst. Space & Earth Exploration, Earth Sci., Western University, London, ON Canada (0.0 [9]) (b) ensuring that the minimum values come from shadows; and (c) ensuring that any component of interest is not present in a shadowed area, especially frost and/or ice. In cases where minima pixels do not lie in shadow, a modified DS correction approach may be used, but is not always be successful [18]. **Results**: *Alga Crater*: **Fig. 1** shows the DS-corrected spectra extracted from known locations for olivine- and low-Ca pyroxene (LCP)-bearing materials after [17]. DS correction was able to help isolate a previously undocumented unit (grey spectrum in **Fig. 1A**) that is most consistent with a plagioclase-rich endmember. Notably, these results were obtained without using the standard ratioing technique. Detection of an LCP-bearing component in Oxia Planum: Fig. 2 highlights the matching of averaged DS corrected spectra with an LCP spectrum provided by RELAB [19]. These spectra were extracted from CRISM FRT 9A16, particularly from pixels over exposures in the walls of two craters SE from the center of the 3-sigma landing ellipse. This LCP-bearing material has not been previously reported for this FRT, nor elsewhere over the landing ellipse [e.g., 20], but this is likely due to poor coverage of the landing site with targeted CRISM observations. LCP bearing materials appear to dominate the primary materials that crystallized early in the history of Mars [e.g., 21], and therefore represents an important target for future investigation by the ExoMars Rosalind Franklin rover. While it appears that LCP has only been identified in this one CRISM targeted observation to date, an LCP component could be more widespread at local/in situ scales and accessible to the rover. **Fig. 1.** CRISM DS-corrected spectra vs. reference reflectance spectra. A) Unratioed 3x3 averaged DS-corrected I/F spectra extracted from CRISM FRT 6415 covering the uplift of Alga Crater. B) Library reflectance spectra from USGS [22] (Anorthite) and Klima et al. [23] spectral libraries (LCP – EN80 and Olivine – Fo20). **Fig. 2** Continuum-removed spectra extracted from CRISM FRT 9A16 over Oxia Planum (unratioed 3x3 averaged DS-corrected I/F spectra; green) and a scaled RELAB reference reflectance spectrum for Orthopyroxene (LCP; red). Conclusions: Preliminary spectral results indicate that the DS correction serves as a useful, less time-intensive approach to compositional analysis from remote sensing VNIR observations. While such a correction is acquisition geometry and scene dependent (i.e., must be based on pixels completely in shadow) and may be prone to over-correction, the results obtained from well-corrected CRISM cubes permits direct comparisons with reference spectra without the need for spectral ratioing with a spectrally bland or neutral component in the scene. Since there are several caveats to consider, this correction method should be used to augment and complement, not replace, the results obtained from the standard CRISM ratioing and other photometric correction methods. References: [1] Bibring J. P. et al. (2004) ESA Spec. Pub., 37-50 [2] Christensen P.R. et al. (2004) SSR, 110, 85-130. [3] Murchie S. et al. (2007) JGR, 112. [4] McEwen A.S. et al. (2007) JGR, 112. [5] Thomas N. et al. (2017) SSR 212, 1897-1944. [6] McGuire P.C. et al. (2008) IEEE Trans. Geosc., 46(12), 4020-4040, [7] Ceamanos X, et al. (2019), JGR, 118. [8] Itoh and Parente (2021) Icarus, 114024. [9] Wolff M.J. et al. (2017) Cambridge Univ. Press, Chapter 6, 106-171. [10] Fernando J. et al. (2017) LPSC XLVIII, p.1635. [11] Seelos F. et al. (2016) LPSC, 1783.[12] Pelkey S.M. et al. (2007), JGR 112. [13] McGuire P.C. et al. (2009) PSS, 57, 809-815. [14] Morgan et al. (2011) LPSC, 2453. [15] Tornabnene et al. (2021), LPSC, 2459. [15] Chavez P. (1988) RSE, 24, 459-479. [16] Viviano C.E. et al. (2014), JGR, 1403-1431. [17] Skok et al. (2012), JGR 117. [18] Quantin-Nataf et al. (2021) Astrobio. [18] Tornabene et al. (in prep). [19] Pieters (1983), JGR, 9534-9544. [20] Quantin-Nataf et al. (2021), Astrobiology, 345-366. [21] Baratoux et al. (2013) JGR, 59-64. [22] Clark et al. (2007) USGS #231.[23] Klima et al. (2007) MAPS, 235-253. Acknowledgements: The lead author acknowledges support from the Canadian Space Agency (CSA), and the NSERC DG programme.