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Introduction: Determining the mineral and phase
composition of the Martian surface is key to understand-
ing the geologic history and evolution of the planet.
VNIR multi- and hyperspectral datasets from orbit (e.g.,
OMEGA, THEMIS VIS, CRISM. HiRISE, CaSSIS) [1-
5] are often used to provide quantitative constraints on
the composition of the surface but must be corrected for
all atmospheric and photometric effects [7-9] prior to
analysis. In addition to atmospheric COz absorptions,
VNIR radiative transfer from Mars is also dominated by
scattering due to aerosols in the atmosphere, which has
a significant impact on interpreting remotely sensed
VNIR surface spectral characteristics [10-11]; this is es-
pecially true over the wavelength range shortward of
1000 nm where the contributions of a ferric iron oxide
aerosol (i.e., airborne Martian dust) have the most im-
pact on orbital spectra [11]. As a result, all calibrated
orbital VNIR datasets of Mars are considered “Top Of
the Atmosphere” (TOA) [e.g., 10-11] until they have
been appropriately corrected for. Importantly, this is till
the case even for the “atmospherically corrected” cubes
(e.g., CRISM joined VNIR+IR data, i.e., MTRDRs
[11]), that are only corrected for effects of the COa-
dominated gas absorption (i.e., by applying the division
of elevation-scaled volcano-scan spectra for all pixels in
the scene [12-14]). While atmospheric COz has been
scaled out, the aerosol scattering contribution remains,
which contributes to a reduction of the spectral contrast
from the surface. This is one of several reasons why
spectral ratioing is often adopted to enhance the spectral
characteristics of a Region Of Interest (ROI) on the sur-
face and to determine its composition.

Tornabene et al. [15] has recently demonstrated that
a simple empirical dark subtraction (DS-correction),
when applied to both CRISM and CaSSIS, may be able
to provide remarkable results in isolating surface spec-
tral components and permitting direct comparisons with
reference spectra. This can prove to be significantly
helpful over the ratioing method commonly employed
for CRISM analysis, especially in cases where a spec-
trally bland region needed to ratio against may not be
present in the scene or sufficiently spectrally neutral.
This work presents results from the application of a DS-
correction method to CRISM cubes to gauge its useful-
ness as a supplement for spectral validation, and perhaps
uncovering additional endmembers present in the data
where standard methods fail.

Methods: We applied a standard minimum value
DS correction in ENVI, commonly used to minimize
scatter in terrestrial datasets [15], to atmospherically
COz-corrected MTRDR cubes. Because higher Aerosol
Optical Depths (AOD) for common scatterers cause fur-
ther reduction in surface spectral contrasts, we only use
(and recommend) CRISM cubes with lower estimated
dust and water-ice AOD (not much greater than ~1.0
and 0.2, respectively). We begin our analysis with 31
observations: 29 covering the CRISM type-localities
summarized by Viviano-Beck et al. [16], 1 covering the
compositionally diverse and well-characterized uplift of
Alga Crater [17] (Fig. 1) and 1 covering the ExoMars
2022 rover landing site in Oxia Planum (Fig. 2).

Validation of the DS correction: We note that the DS
correction may be prone to over-correction as it can
sometimes extract values from surfaces not in shadow
(e.g., a deeply absorbing and wavelength-dependant
dark surface). Furthermore, there may be cases where
shadowed pixels, while being dominated by scatter, also
contain reflections off the surface, including any nearby
bright materials (illuminated slopes and/or surface
frost/ice). Hence, minimization of DS overcorrection re-
sults is key to pivotal to provide robust results and
thereby, gives impetus for a validation approach. Based
on our previous work [15], this approach includes: (a)
visually inspecting the minimum spectrum from the
scene (this should generally approximate a Martian dust
spectrum as it is always present in the atmosphere (dust
AOD is generally > 0.0 [9]) (b) ensuring that the mini-
mum values come from shadows; and (c) ensuring that
any component of interest is not present in a shadowed
area, especially frost and/or ice. In cases where minima
pixels do not lie in shadow, a modified DS correction
approach may be used, but is not always be successful
[18].

Results: Alga Crater: Fig. 1 shows the DS-corrected
spectra extracted from known locations for olivine- and
low-Ca pyroxene (LCP)-bearing materials after [17].
DS correction was able to help isolate a previously un-
documented unit (grey spectrum in Fig. 1A) that is most
consistent with a plagioclase-rich endmember. Notably,
these results were obtained without using the standard
ratioing technique.

Detection of an LCP-bearing component in Oxia
Planum: Fig. 2 highlights the matching of averaged DS
corrected spectra with an LCP spectrum provided by
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RELAB [19]. These spectra were extracted from qﬁ.-’r B
CRISM FRT 9A16, particularly from pixels over expo- '
sures in the walls of two craters SE from the center of
the 3-sigma landing ellipse. This LCP-bearing material
has not been previously reported for this FRT, nor else-
where over the landing ellipse [e.g., 20], but this is
likely due to poor coverage of the landing site with tar-
geted CRISM observations. LCP bearing materials ap-
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A FRT 9A16 over Oxia Planum (unratioed 3x3 averaged DS-
corrected I/F spectra; green) and a scaled RELAB reference
reflectance spectrum for Orthopyroxene (LCP; red).
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that the DS correction serves as a useful, less time-in-
/ tensive approach to compositional analysis from remote
sensing VNIR observations. While such a correction is

acquisition geometry and scene dependent (i.e., must be
based on pixels completely in shadow) and may be
prone to over-correction, the results obtained from well-
corrected CRISM cubes permits direct comparisons
with reference spectra without the need for spectral ra-
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this correction method should be used to augment and
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