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Introduction: A new feldspathic rock type com-

prising of Mg-spinel mineral was discovered on the 

Moon using remote sensing and subsequently reported 

from multiple, small localized areas [1, 2, 3, 4]. These 

exposures are generally associated with the thin crust 

regions of low-Fe terrain and expected to be globally 

distributed [3, 4]. The Mg-spinel detection and map-

ping have been carried out using the Moon Mineralogy 

Mapper (M
3
) data [5] onboard Chandrayaan-1 [6]. The 

presence of a strong, broad absorption band near 2µm 

and the absence of any significant absorption band 

near 1µm are the unique spectroscopic characteristics 

of Mg-spinel [7]. A systematic mapping of Mg-spinel 

at global scale and its association with other major 

lunar minerals is important for understanding its petro-

logical significance. 

We present here the first results from a machine 

learning enabled systematic global mapping of Mg-

spinel exposures using M
3
 data.  

Data and Method:  M
3 

is a hyperspectral (85 

bands) imaging spectrometer with a spatial resolution 

of 140 - 280 m/pixel in the visible-near infrared wave-

length region (0.4-3 µm) [5] that flew onboard Chan-

drayaan-1 mission. In this work, we have utilized M
3
 

level 2 data from optical period (OP) 1B [8].  

We opted for a one dimensional convolutional neu-

ral network (CNN) which is considered to be one of 

the most powerful pattern recognition methods [9]. 

The model is trained in a fully supervised manner for 

improved spectral matching. For the model training, 

we labeled three distinct classes: (1) Mg-spinel spectral 

signatures extracted from already reported locations [2, 

3]; (2) Pyroxene spectral signatures extracted based on 

the presence of absorption bands around 1µm and 2 

µm [10]; (3) Featureless reflectance spectra. We man-

ually labeled the data into each class. The Mg-spinel 

spectral class consist less than 10% of spectra in com-

parison to other two classes. We used the Synthetic 

Minority Oversampling Technique (SMOTE) method 

to increase the number of samples in the Mg-spinel 

spectral class and balanced the training dataset. This 

approach increased the classifier robustness and accu-

racy. The CNN was trained with number of epochs as 

5, the batch size as 100, ReLU activation function in 

input and hidden layers, softmax activation function 

for out layer, and Adam as an optimizer. For speeding 

up the execution, CNN approach was executed on  

GPU based workstation with batch-wise 

(13000/iteration) prediction. The model searched 

through 1.1 billion M
3
 reflectance spectra and classi-

fied a total of 2362 reflectance spectra under the 

Fig. 1: Mg-spinel detections by applying a one dimensional CNN to the OP1B M3 reflectance data. The arrows are 

the locations from where the reflectance spectra have been extracted and shown in Fig. 2. The base map is from 

lunar reconnaissance orbiter wide angle camera (WAC) mosaic [12]. 

2267.pdf53rd Lunar and Planetary Science Conference (2022)



spectral class Mg-spinel for the spectral band parame-

ter extraction. The data-set is further refined by exam-

ining the spectral band parameters; band center posi-

tions and the band depths. We extracted the spectral 

parameters using the approach adopted by [11]. Re-

flectance spectra with band center position > 1.9 µm 

have been removed.  

Results and Discussion: Fig. 1 shows select expo-

sures of newly identified Mg-spinel locations along 

with already reported locations from [3]. We carried 

out a careful validation at the locations from [3] and 

found that the model successfully identified already 

reported exposures using OP1B M
3
 data. Fig. 2 shows 

the reflectance spectra normalized at 1.5 µm extracted 

from selected locations (white arrows) in Fig.1. The 

reflectance spectrum in blue in Fig. 2 is extracted from 

the central peak of Albategnius crater and the spectral 

character is comparable to [3]. The remaining two 

spectra (red and cyan) in Fig 2 are new identifications 

from high latitudes (±60
o
). These spectra from higher 

latitudes are comparatively noisy but still display the 

key spectral characteristics of Mg-spinel. The expo-

sures corresponding to these spectra are located on the 

western wall of Rutherfurd crater (61
o
S,12.1

o
W) and 

from an unnamed crater located at 59.9
o
N, 34.5

o
W. 

The spatial extent in both cases is ~ 4 M
3
 pixels.   

The proposed machine learning approach identified 

a total of 32 new Mg-spinel locations mainly from the 

highlands and from mare-highland boundary regions. 

These results suggest that Mg-spinel exposures are 

even more widespread than previously thought [3, 4].   

Summary and future work:  This work represents  

our first attempt of applying machine learning tech-

niques for identification of Mg-Spinel exposures. The 

model picked up all the Mg-spinel locations covered 

by OP1B from [3] and additionally identified several 

new locations typically spread over 3-4 pixels only. 

Such small exposures are otherwise challenging to 

locate manually, thereby highlighting the utility of our 

work in obtaining global distribution of Mg-spinel 

exposures. Further detailed mapping of Mg-spinel and 

other major lunar minerals is underway for specific 

sites. This work will be further extended by including 

the remaining M
3
 reflectance data from OP2C which 

will include a systematic coverage of the far side. A 

systematic study at global scale has important implica-

tions towards understanding the origin of Mg-spinel, 

given that multiple hypotheses have been proposed. 

We will apply this developed framework to the Imag-

ing Infrared Spectrometer [13] from Chandrayaan-2 

[14] to further increase the spatial coverage. 

 

 

 
Fig. 2: Extracted reflectance spectra from loca-

tions shown in Fig.1 (white arrows and diamonds). 

The top panel is normalized reflectance spectra and 

the bottom panel is corresponding continuum removed 

spectra indicating band center position less than 2µm.  
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