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Introduction:  The Double Asteroid Redirection 

Test (DART) mission will be the first test of a kinetic 
impactor as a means of planetary defense [1]. In Fall 
2022, DART will collide with Dimorphos, the 
secondary in the Didymos binary asteroid system. The 
impact will cause a momentum transfer from the 
spacecraft to the binary asteroid, changing the orbit 
period of Dimorphos and forcing it to librate in its orbit. 
Owing to the coupled dynamics in binary asteroid 
systems, the orbit and libration state of Dimorphos are 
intertwined [2]. Thus, as the secondary librates, it also 
experiences fluctuations in its orbit period. These 
variations in the orbit period are dependent on the 
magnitude of the impact perturbation, as well as the 
system’s state at impact and the shape of the secondary. 
In general, any binary asteroid system whose secondary 
is librating will have a non-constant orbit period on 
account of the secondary’s fluctuating spin rate. The 
orbit period variations are typically driven by two 
modes: a long-period and short-period, each with 
significant amplitudes on the order of tens of seconds to 
several minutes.  

Owing to the proximity and irregular shapes of the 
bodies in a binary asteroid, these systems are driven by 
coupled attitude and orbit dynamics in what is known as 
the full two-body problem [3]. This problem has been 
studied in depth [4], and we particularly rely on the 
work in [2], who study the libration in these systems. 
More accurate numerical models have also been 
developed, and we rely on the General Use Binary 
Asteroid Simulator (GUBAS) for accurate simulations 
of binary asteroid dynamics [5]. 

Dynamics Model: In this work we take advantage 
of two dynamics models for binary asteroids. The first 
is a simple two-dimensional planar model, where the 
primary is modeled as an oblate spheroid and the 
secondary as a triaxial ellipsoid. This model is used to 
establish a link between the secondary’s libration rate 
and the mutual orbit period. Assuming the combined 
angular momentum of the secondary’s spin and the 
mutual orbit is constant, this takes the form of a basic 
conservation of angular momentum, and is written as 

𝜃̇ =
𝐻 − 𝐼!𝜆̇
𝐼! + 𝜈𝑟"

 

where H is the constant angular momentum, Iz is the 
secondary’s polar moment of inertia, 𝜈 is the mass 
fraction of the binary system, and r is the separation 
distance. This relationship demonstrates how the orbit 
rate and secondary spin rate are related, and the relevant 

system parameters that affect this relationship. At an 
equilibrium value of angular momentum, the secondary 
spin rate is zero (tidally locked) and the orbit rate is 
constant. However, any deviation from this equilibrium 
value will have a varying orbit rate, and as a result a 
non-constant orbit period. It is worth noting that the 
issue of defining the orbit period in a binary asteroid 
system is non-trivial. Owing to the coupled nature of the 
full two-body problem, the dynamics are non-
Keplerian. Thus, we define the orbit period as the time 
required for the secondary to complete one full rotation 
relative to an inertial plane.  

Assuming Didymos is currently in an equilibrium 
state. The DART impact will serve as a perturbation to 
this equilibrium, where the change in angular 
momentum is defined as 

𝛥𝐻 = 𝛽𝜈𝑀#$%&𝑉#$%& 
where MDART is the mass of the impactor and VDART is its 
velocity relative to Dimorphos. 𝛽 is called the 
momentum enhancement factor and is an important 
quantity in the DART mission. Indeed, one of the 
primary objectives of the mission is to determine this 
factor. Simply put, 𝛽 is the ratio of the total momentum 
transferred to the momentum transferred by a perfectly 
inelastic collision. This captures the effect that ejecta 
from the surface of the target will have on the overall 
momentum transfer. Thus, the minimum value of 𝛽 is 1 
corresponding to an inelastic collision with no ejecta 
and the sole transfer of momentum from the spacecraft 
to the asteroid. The true value of 𝛽 will be larger than 1 
and dependent on the properties of the body. 
     The second model used in this analysis is the more 
accurate GUBAS code. This uses a fourth degree and 
order gravity field along with polyhedral models for the 
asteroids to propagate the full equations of motion of the 
system. Thus, while the first model is a highly 
simplified representation of binary asteroids, GUBAS 
will serve as a check on this model and a means of 
obtaining more accurate results, including three-
dimensional effects. 

Results: To simulate a DART impact, we start the 
binary system in an equilibrium configuration with the 
exception of its perturbed angular momentum value for 
a given 𝛽 factor. While propagating the equations of 
motion, we calculate the exact times the secondary has 
crossed the inertial y-z plane and difference these times 
to calculate each independent orbit period. The choice 
of this plane is arbitrary. Figure 1 shows the orbit period 
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of Didymos over time for the case 𝛽 = 3. This clearly 
shows how the orbit period varies over time. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The orbit period over time for the post-
impact Didymos system with a value 𝛽 = 3 

     We define the orbit period variation as the 
elementary range of the time history shown in Figure 1; 
that is, the difference between the maximum and 
minimum orbit period over the time domain. In this 
way, we can describe the orbit period variations as a 
scalar and expand our analysis. We vary the value of 𝛽 
between 1 and 5 and calculate the corresponding orbit 
period variation and libration amplitude. These results 
are shown in Figure 2, along with data points calculated 
using the high fidelity GUBAS results for validation. 

 
Figure 2: The libration amplitude and orbit period 
variation for varying values of 𝛽. The data points are 
corresponding GUBAS results. 

     In Figure 2 we see a clear linear relationship between 
𝛽 and both the libration amplitude and orbit period 
variation. This again illustrates how closely related the 
secondary spin and orbit period variations are. 
     While this establishes the DART impact will result 
in a non-constant orbit period, there are several 
additional factors that warrant further investigation. 
Namely, the shape of Dimorphos is poorly defined, and 
so this analysis is repeated for a wide range of secondary 
shapes. The current configuration of Didymos is also 
currently unknown and may not be in equilibrium. Thus, 

several initial conditions should also be tested to 
examine how a non-equilibrium configuration affects 
the post-impact dynamics. 
     Lastly, note in Figure 1 that the orbit period 
variations appear to be driven by two modes: a short-
period and a long-period. These modes strongly depend 
on the shape of the secondary and the value of 𝛽. As an 
illustration, Figure 3 shows the orbit period of three 
shapes of Dimorphos, defined by the ellipsoidal axis 
ratio a/b. This shows how drastically the behavior can 
change with the secondary’s shape and highlights the 
importance of obtaining an accurate shape model. 
     These modes are driven by the apsidal precession of 
the eccentricity vector, measured by the Keplerian 
longitude of periapsis. On average, this precesses with a 
frequency equal to the long-period mode, with short-
period oscillations within that precession. 

 
Figure 3: The orbit period variations for three 
different shapes of Dimorphos. 

     These modes are particularly important as they carry 
direct implications for post-impact observations. For 
example, it is prudent that observations span for the 
duration of the long-period mode. This way, 
observations have the best chance of detecting 
variations in the orbit period, as the short-period mode 
may be too short to detect. 
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