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Introduction: Through the study of impact crater
shapes, one can draw important conclusions about the
nature and evolution of planetary surfaces [e.g., 1-4].
In particular,  studying the depth (d)  to  diameter  (D)
ratio  (d/D)  of  a  population  of  impact  craters,  in
combination  with  crater  count  statistics,  can  yield
valuable insights regarding rates of erosion and burial
[5]. 

Motivated  by  the  great  abundance  of  available
planetary surface image data, the goal of this project is
to  develop  an  efficient  way  to  estimate  d/D  from
satellite  images  of  impact  craters  for  which  stereo
information is not available [6]. We set out to develop
and train a machine learning algorithm to extract d/D
from a dataset  of  synthetic  impact  crater  images  for
which model d/D is known. 

The applications of machine learning to planetary
science  are  numerous  and  diverse  [7],  including
automatic  planetary  surface  mapping  [8]  and  the
detection of impact craters [9].  Our algorithm makes
use of Support Vector Regression (SVR), which is a
type  of  Support  Vector  Machine  (SVM)  [10,  11].
SVMs are  a  branch  of  supervised  machine  learning
valued  for  their  straightforward  implementation  and
versatility in solving both classification and regression
problems.  In  regression  analysis,  an  SVR algorithm
produces a hyperplane function to fit the training data
points,  as  well  as  an  ε-tube  that  surrounds  the
hyperplane.  Tunable  hyperparameters  include  the
width of the ε-tube (ε) and the amount an algorithm is
penalized for points which fall outside the ε-tube.

Methods: We developed synthetic  datasets  using
Python  and  POV-Ray  (a  ray-tracing  scene-renderer)
[12].  Our  goal  was  to  simulate  the  variation  in
illumination of impact craters  for  a proof of concept
study. The synthetic crater images account for factors
that may affect actual cropped images of craters, such
as  crater-center  offset  (mapping  error),  background
noise,  and  lighting  and  shadows  determined  by  the
position of the Sun relative to the planet surface. We
generated  two  datasets  of  100,000  synthetic  craters
each, holding the solar elevation angle (α) constant at
30º for Dataset 1 and allowing it to range from 0-90º
for Dataset  2.  Figure 1 shows a sample of  synthetic
craters.

We  have  trained  and  tested  SVR  algorithms  on
three subsets of each dataset. In each case we split the
data in  half  to  create  a  training subset  and a testing
subset.  In  our  first  attempt,  we  used  only  ~4,000
synthetic  craters  due  to  memory  limitations  and  in
order  to  conduct  a  grid  search  to  optimize

hyperparameters. Our second and third attempts made
use  of  ~10,000  and  25,000  synthetic  craters,
respectively. 

Results: We  measured  the  SVR  algorithm’s
effectiveness  by  comparing  actual  d/D  to  the
algorithm’s predicted d/D for each synthetic crater in
the testing subset, obtaining the correlation coefficient
r2. Figure 2 shows the algorithm’s actual vs predicted
d/D  for  the  N  =  25,000  subsets  of  Dataset  1  and
Dataset 2. For the three sample sizes (~4,000, ~10,000,
and 25,000) r2 increased from 0.865 to 0.940 and then
0.963 for Dataset 1 and from 0.339 to 0.650 and then
0.71 for Dataset 2, respectively (see Fig. 2).  

Discussion: Comparing the results from these three
sample  sizes  indicates  that  using  a  larger  dataset
improves the algorithm’s r2 score significantly until the
training set size exceeds about 10,000. Going forward,
we intend to probe the limits of this improvement by
training and testing the SVR algorithm on even larger
subsets of Datasets 1 and 2, as well as by attempting
the same analysis on real image data.

In our synthetic datasets, solar elevation angle (α)
determines  the  illumination  pattern  on  crater  floors,
including the size and placement of shadows. For the
same training set size,  the SVR algorithm performed
significantly better when α was held constant at  30º.
We may infer  that  the variation  at  high values  of  α
leads to less variation in the illumination pattern, and is
therefore  less  discriminating  between  values  of  d/D.
This implies that our final model, trained on real image
data, may be the most useful (or only useful at all) in
the case of relatively shallow elevation angles.

An  important  next  step  is  to  test  algorithm
performance on real data rather than synthetic data. We
intend to train and test the SVR algorithm on a dataset
of ~20,000 images of Martian craters for which d/D is
known (from stereo-derived measurements) and where
D ranges from 1-5 km. In the event of positive results,
our final step would be to use the algorithm to estimate
d/D for a dataset of ~300,000 non-stereo MRO-CTX
images of Martian craters for which d/D is not known.
Based on our results to date using synthetic data, we
believe  our  algorithm  will  at  least  be  able  to
distinguish between shallow (d/D < 0.075), moderately
filled  (d/D  =  0.07-0.013),  and  deep  (d/D  >  0.013)
craters.  Given that  our synthetic  craters  lack realism
that  introduces  significant  variation,  including  ejecta
blankets, non-circular crater shapes, and variations in
tone and texture, our results are likely to fall short of
the accuracy demonstrated using synthetic images. The
range  of  α  values  in  this  dataset  may  also  pose  a
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challenge to the SVR algorithm, but our results suggest
that the large size of each dataset will at least allow us
to  train  the  algorithm  with  a  sufficient  number  of
images.

In  addition  to  SVR,  we  intend  to  explore  the
application of other branches of machine learning. A
logical next step would be to develop a Support Vector
Classifier  (SVC),  which  is  an  SVM  used  for
classification  rather  than  regression  [10].  Discretely
binning d/D could allow us to use an SVC algorithm to
classify  crater  images  into  different  d/D ranges.  We
could  then  decrease  the  step  size  between  bins  to
improve the  accuracy  of  the algorithm’s  predictions.
Convolutional  Neural  Networks  (CNNs)  are  another
promising  avenue  that  could  make  use  of  either
classification or regression [13].
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   Fig. 1. (a,b) Synthetic craters from Dataset 1 (solar altitude α = 30o). (c,d) Examples from Dataset 2 (α = 0-90o)

Fig. 2. (a) Actual vs Predicted d/D for Dataset 1 (N 25,000, r2=0.963). (b) Actual vs Predicted d/D for Dataset 2     
(N = 25,000, r2=0.711).
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