
BLENDER MODELING AND SIMULATED TESTBED FOR SOLAR SYSTEM OBJECT IMAGING AND

CAMERA PERFORMANCE. A. Penttilä1, M. F. Palos2, A. Näsilä3, and T. Kohout2,4, 1Department of Physics,

University of Helsinki, Finland (antti.i.penttila@helsinki.fi), 2Institute of Geology of the Czech Academy of Sciences,

Prague, Czech Republic, 3VTT Technical Research Centre of Finland Ltd, Espoo, Finland, 4Department of Geography

and Geophysics, University of Helsinki, Finland.

Introduction: The performance of imaging units

for space missions should be verified before flight.

Camera exposure times with the expected fluxes should

be planned, resulting signal-to-noise ratios (SNR)

computed, and the overall image quality evaluated. This

can be done in a specialized laboratory with the

prototype or the final flight-spare imaging unit but

having a quick simulation tool to help the design in early

phase before the hardware is finalized would be an asset.

We are developing a software environment based on

Blender rendering software and Python post-processing

and analysis library for the abovementioned purpose.

The software [1] will be used with the ASPECT

hyperspectral camera (Milani CubeSat on ESA’s Hera

mission), the HyperScout hyperspectral camera (Hera

mission), and the MIRMIS hyperspectral camera unit

(ESA’s Comet Interceptor mission).

Modeling and rendering an asteroid or a comet

nucleus: Blender is an open-source 3D modeling, ray-

tracing and rendering software that is currently widely

used in many fields outside science [2]. However,

Blender’s capabilities in modeling the 3D geometry and

rendering the result makes it also suitable for simulating

how an asteroid or a comet nucleus would appear when

imaged. An asteroid or a comet nucleus without the

coma environment are relatively easy targets for

imaging modeling since the material properties of the

object’s surface can be assumed to be quite

homogeneous.

For camera performance testing purposes, the

geometry of the target does not need to be completely

correct. It is sufficient if the overall size and shape

matches the target, and if the surface roughness and

boulder distribution are representative. Blender has

functions for introducing procedural geometric features

randomly on the underlying shape, and we use this to

introduce boulders of different sizes on the target. For

the overall target shape, either low-resolution models

derived from lightcurve or radar observations or high-

resolution legacy shape models from previous

rendezvous missions scaled to required size can be used,

such as the models for Bennu, Ryugu, or

67P/Churyumov–Gerasimenko (see Fig. 1).

We have implemented some commonly used

photometric models for the surface material in Blender.

Blender has some limitations when compared to other

ray-tracers, namely it does not really support custom

scattering laws to be implemented. The internal ray-

tracing loop employs only Blender’s internal shaders,

i.e., scattering laws for a surface element. In other

words, one can implement any phase function

depending only on the phase angle in Blender, but not

disk function that would depend on the incident and

scattering directions.

Fortunately, Blender’s internal shaders include

Lommel-Seeliger (‘volume scatter’ in Blender) and

Lambertian (‘diffuse BSDF’), and one can also mix

these, which covers already the common disk functions

for dark and bright surfaces quite well. For phase

functions we have implemented the exponential-

polynomial, linear-magnitude, and ROLO functions as

shown in [3]. By combining the disk and the phase

functions we can implement Lommel-Seeliger, ROLO,

McEwen, and Lambert photometric functions for the

target.

The Blender part of our software is outputing ‘ideal’,

i.e., noiseless and full detector efficiency images with a

given observing geometry, camera field-of-view,

detector resolution, and surface albedo. The next post-

processing step subsequently introduces the effects

originating from the camera and the detector physical

capabilities.

Camera performance simulation: The images

produced by Blender can be converted to real physical

units (I/F, Watts, photons, electron counts on CCD).

While the RGB channel values in the Blender images

have arbitrary units and scale, one can render a

Lambertian disk at backscattering with the same

illumination intensity and target-camera distance as in

the actual object image. This calibration procedure will

give us I/F conversion from the RGB values.

Considering the target’s distance to the Sun we can

further convert these into radiant flux in Watts.

If we are dealing with a spectral instrument, we need

to have a spectral image/datacube. Currently we are not

changing the parameters of the photometric function

with the wavelength. This implies that the received flux

is only linearly dependent on the wavelength-dependent

albedo of the target, and that we can just multiply one

rendered image with the normalized spectra of the

target’s surface material for a spectral datacube.

With spectral flux for each image pixel, we can next

apply the transmission of the camera optics and the

spectral filter (i.e., the Fabry-Perót interferometer in

2151.pdf53rd Lunar and Planetary Science Conference (2022)

ASPECT and MIRMIS cameras). Watts can be

converted into photon counts for each wavelength, and

finally the detector quantum efficiency curve can be

used to achieve electron volt charges at the detector.

The previous applies to monochromatic detectors. If

there is a Bayer pattern RGB detector (in, e.g., ASPECT

visual channel) or multifilter pattern detector (e.g.,

HyperScout), this must be taken into account.

Once the electron volt flux per time unit on the

detector has been solved, we can introduce a reasonable

dark field pattern, dark noise (Gaussian), and photon

shot noise (Poisson) for a given exposure time. This will

give us the final, simulated camera image or a

hyperspectral datacube of the target, together with the

SNR estimate.

Discussion: The SSO object simulated imaging and

camera performance tool that we describe above can be

used to produce expected camera data, with realistic

noise, for space mission and instrument design.

Especially with (hyper)spectral cameras this tool can be

used to verify how different spectral and/or spatial

details could be resolved with certain exposures, noise

levels, and optics/camera transmissions.

We have started with application to atmosphereless,

relatively homogeneous targets such as an asteroid or a

comet nucleus. Variability to surface properties (local

albedo or color, for example) can be introduced by

implementing a more complex (Blender) 3D models for

the targets. Simple atmospheres and comet gas/dust

environments could be added in the future, again it is a

matter of having more complicated geometric models

and also having a suitable volume scattering applied in

the atmosphere in Blender simulations. To some extent,

this is what is done in the SISPO project [4]. For

visualizing views to an asteroid or a comet with a given

spacecraft flight path, possibly given with a SPICE

kernel, we acknowledge the shapeViewer [5]. If there is

interest to our tool beyond the current space mission

activities, we can develop the software to include these

kinds of features.

References:

[1] Git project for the Blender/Python imaging

simulations. https://bitbucket.org/planetarysystemre

search/workspace/projects/SSO_PHOTOMETRY. [2]

Blender software, https://www.blender.org/. [3] Golish

D. R. et al. (2021) Icarus, 357, 113724. [4] Pajusalu M.

et al. (2021) arXiv, astro-ph.IM, 2105.06771. [5]

Vincent J.-B. (2014) ACM conference, Helsinki.

Figure 1: Blender-visualization of the high-resolution shape model of asteroid Ryugu with added boulders on

the surface.

2151.pdf53rd Lunar and Planetary Science Conference (2022)

