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Introduction:  The performance of imaging units 

for space missions should be verified before flight. 

Camera exposure times with the expected fluxes should 

be planned, resulting signal-to-noise ratios (SNR) 

computed, and the overall image quality evaluated. This 

can be done in a specialized laboratory with the 

prototype or the final flight-spare imaging unit but 

having a quick simulation tool to help the design in early 

phase before the hardware is finalized would be an asset. 

We are developing a software environment based on 

Blender rendering software and Python post-processing 

and analysis library for the abovementioned purpose. 

The software [1] will be used with the ASPECT 

hyperspectral camera (Milani CubeSat on ESA’s Hera 

mission), the HyperScout hyperspectral camera (Hera 

mission), and the MIRMIS hyperspectral camera unit 

(ESA’s Comet Interceptor mission). 

Modeling and rendering an asteroid or a comet 

nucleus:  Blender is an open-source 3D modeling, ray-

tracing and rendering software that is currently widely 

used in many fields outside science [2]. However, 

Blender’s capabilities in modeling the 3D geometry and 

rendering the result makes it also suitable for simulating 

how an asteroid or a comet nucleus would appear when 

imaged. An asteroid or a comet nucleus without the 

coma environment are relatively easy targets for 

imaging modeling since the material properties of the 

object’s surface can be assumed to be quite 

homogeneous. 

For camera performance testing purposes, the 

geometry of the target does not need to be completely 

correct. It is sufficient if the overall size and shape 

matches the target, and if the surface roughness and 

boulder distribution are representative. Blender has 

functions for introducing procedural geometric features 

randomly on the underlying shape, and we use this to 

introduce boulders of different sizes on the target. For 

the overall target shape, either low-resolution models 

derived from lightcurve or radar observations or high-

resolution legacy shape models from previous 

rendezvous missions scaled to required size can be used, 

such as the models for Bennu, Ryugu, or 

67P/Churyumov–Gerasimenko (see Fig. 1). 

We have implemented some commonly used 

photometric models for the surface material in Blender. 

Blender has some limitations when compared to other 

ray-tracers, namely it does not really support custom 

scattering laws to be implemented. The internal ray-

tracing loop employs only Blender’s internal shaders, 

i.e., scattering laws for a surface element. In other 

words, one can implement any phase function 

depending only on the phase angle in Blender, but not 

disk function that would depend on the incident and 

scattering directions. 

Fortunately, Blender’s internal shaders include 

Lommel-Seeliger (‘volume scatter’ in Blender) and 

Lambertian (‘diffuse BSDF’), and one can also mix 

these, which covers already the common disk functions 

for dark and bright surfaces quite well. For phase 

functions we have implemented the exponential-

polynomial, linear-magnitude, and ROLO functions as 

shown in [3]. By combining the disk and the phase 

functions we can implement Lommel-Seeliger, ROLO, 

McEwen, and Lambert photometric functions for the 

target. 

The Blender part of our software is outputing ‘ideal’, 

i.e., noiseless and full detector efficiency images with a 

given observing geometry, camera field-of-view, 

detector resolution, and surface albedo. The next post-

processing step subsequently introduces the effects 

originating from the camera and the detector physical 

capabilities. 

Camera performance simulation:  The images 

produced by Blender can be converted to real physical 

units (I/F, Watts, photons, electron counts on CCD). 

While the RGB channel values in the Blender images 

have arbitrary units and scale, one can render a 

Lambertian disk at backscattering with the same 

illumination intensity and target-camera distance as in 

the actual object image. This calibration procedure will 

give us I/F conversion from the RGB values. 

Considering the target’s distance to the Sun we can 

further convert these into radiant flux in Watts. 

If we are dealing with a spectral instrument, we need 

to have a spectral image/datacube. Currently we are not 

changing the parameters of the photometric function 

with the wavelength. This implies that the received flux 

is only linearly dependent on the wavelength-dependent 

albedo of the target, and that we can just multiply one 

rendered image with the normalized spectra of the 

target’s surface material for a spectral datacube. 

With spectral flux for each image pixel, we can next 

apply the transmission of the camera optics and the 

spectral filter (i.e., the Fabry-Perót interferometer in 
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ASPECT and MIRMIS cameras). Watts can be 

converted into photon counts for each wavelength, and 

finally the detector quantum efficiency curve can be 

used to achieve electron volt charges at the detector. 

The previous applies to monochromatic detectors. If 

there is a Bayer pattern RGB detector (in, e.g., ASPECT 

visual channel) or multifilter pattern detector (e.g., 

HyperScout), this must be taken into account. 

Once the electron volt flux per time unit on the 

detector has been solved, we can introduce a reasonable 

dark field pattern, dark noise (Gaussian), and photon 

shot noise (Poisson) for a given exposure time. This will 

give us the final, simulated camera image or a 

hyperspectral datacube of the target, together with the 

SNR estimate. 

Discussion:  The SSO object simulated imaging and 

camera performance tool that we describe above can be 

used to produce expected camera data, with realistic 

noise, for space mission and instrument design. 

Especially with (hyper)spectral cameras this tool can be 

used to verify how different spectral and/or spatial 

details could be resolved with certain exposures, noise 

levels, and optics/camera transmissions. 

We have started with application to atmosphereless, 

relatively homogeneous targets such as an asteroid or a 

comet nucleus. Variability to surface properties (local 

albedo or color, for example) can be introduced by 

implementing a more complex (Blender) 3D models for 

the targets. Simple atmospheres and comet gas/dust 

environments could be added in the future, again it is a 

matter of having more complicated geometric models 

and also having a suitable volume scattering applied in 

the atmosphere in Blender simulations. To some extent, 

this is what is done in the SISPO project [4]. For 

visualizing views to an asteroid or a comet with a given 

spacecraft flight path, possibly given with a SPICE 

kernel, we acknowledge the shapeViewer [5]. If there is 

interest to our tool beyond the current space mission 

activities, we can develop the software to include these 

kinds of features. 
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Figure 1: Blender-visualization of the high-resolution shape model of asteroid Ryugu with added boulders on 

the surface. 
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