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Introduction: Europa’s surface is one of the young-

est surfaces in the solar system. The great diversity of 
morphologies observed quickly raised the question of 
the processes responsible for this active resurfacing. 
The Jovian moon is believed to hide a global liquid wa-
ter ocean under its ice crust [1] which led to the assump-
tions of exchange between the surface and the putative 
subsurface ocean through cryovolcanism or diapirism 
events [1]. In addition, Europa is exposed to intense 
space weathering due to the continuous bombardment 
by electrons and ions from Jupiter’s magnetosphere [2]. 
This strongly affects the surface composition as evi-
denced by the trailing hemisphere which appears darker 
and redder than the leading hemisphere. The surface 
therefore appears as the key witness of these internal 
and external processes, its characterization is essential 
to our understanding of Europa over geological time but 
also of its current habitability. 

In the recent years our knowledge of Europa’s sur-
face composition has increased significantly, mainly 
through reflectance spectroscopy. Apart from water ice, 
present in both amorphous and crystalline form, linear 
mixture modelling allowed the detection of hydrated 
compounds such as hydrated sulfuric acid [2] and hy-
drated salts [3]. These detections reinforced the debate 
between a contribution by external sources or an endo-
genic production. 

Spectral fitting analysis are great tools to demon-
strate the presence of a compound. However, to deter-
mine precise abundance, one has to finely characterized 
the microphysics of the ice, such as average grain size, 
macroscopic roughness, porosity and endmember abun-
dances which are highly degenerated with each other 
[4]. It is necessary to use radiative transfer modelling to 
estimate these parameters and integrating the highly 
nonlinear effects of the light path within the regolith due 
to scattering. Such models (for instance [5] and [6]) are 
based on the optical properties of the considered species 
and physical properties of the regolith. Here we report 
the use of the Douté model [6] in a Bayesian inference 
framework to retrieve microphysical properties of Eu-
ropa’s surface based on the Galileo Near-Infrared Map-
ping Spectrometer (NIMS; [7]) hyperspectral data. 

Data:  We use data acquired by NIMS collected dur-
ing the Galileo Mission. As the mission was designed to 
perform flybys, the spatial resolution varies greatly 
from one cube to another which greatly limits the use of 

several cubes for the same geographical area. We focus 
on high spatial resolution cubes (below 5 km/px) on 
both the leading and trailing hemisphere. Here, we pre-
sent the analysis of calibrated data from the hyperspec-
tral cube “14e006ci” (available from the PDS archive). 
We selected a spectrum that corresponds to a brighter 
surface close to a dark lineament of the trailing Anti-
Jovian hemisphere (Fig. 1). 

 The estimated signal-to-noise ratio (SNR) is be-
tween 5 and 50. We mainly focus on the 0.9-2.5 µm re-
gion for which the SNR is higher but also because the 
optical constants of some compounds (hydrated salts 
and SAO) are not available beyond 2.5 µm. On this 
spectral range the uncertainty on the absolute calibration 
is up to 10% [7]. 

Radiative transfer model we use requires the optical 
constants of the species considered. Here we mainly use 
crystalline and amorphous water ice [8,9], sulfuric acid 
octahydrate (SAO; [2]), hydrated salts such as hexahy-
drite, bloedite and epsomite [10] and a dark compounds 
such as magnetite [11]. 

Method:  We use a Monte Carlo Bayesian inference 
approach to analyze NIMS spectra because it has the ad-
vantage of allowing the exploration of a large parameter 
space and looking for non-unique solutions while statis-
tically constraining the model parameters [12,13].  

We use the Douté model [6], which allows estimate 
the bidirectional reflectance of the regolith according to 
the observation geometry of the data, the single scatter-
ing albedo, the particle phase function and the porosity 
coefficient. Then, the Bayesian Posterior sampling is 
used to sample the parameter space we wish to explore 

Figure 1 – Map of Europa with the studied area in blue (ob-
servation 14e006ci). The location of the spectrum used here 
is shown in red. 
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by generating a large amounts of forward model spectra 
and select samples for which the model fit best the data. 
The parameters we are fitting for are the abundances, 
the grain size of each species and the macroscopic 
roughness of the regolith. For the abundances we use a 
Dirichlet prior to ensure that they are sum up to 1, while 
we use a uniform distribution for the other parameters.  

The different steps follows : (1) a random set of pa-
rameters are sampled using the prior distribution func-
tion; (2) from these parameters, a forward simulation 
generate a spectrum at high spectral resolution spectrum 
from the forward model; (3) the spectrum is convolved 
with the instrument response function [7]; (4) the mod-
elled spectrum is compared to the data using a likeli-
hood probability function to compute the posterior prob-
ability of this set of parameters; (5) based on the com-
parison with the actually observed spectrum, this sam-
ple is kept following the posterior probability, or not. 
Once the chain of solutions is statistically stationary, its 
density represents the a posteriori probability density 
function of the parameters we seek to constrain. One can 
then get marginalized posterior distribution of the pa-
rameters as well as pairwise distribution to look at po-
tential correlations between parameters. 

Results: A typical result is shown figure 2 for one 
spectrum using 4 compounds : crystalline water ice, 
hexahydrite, magnetite and SAO. Looking at the resid-
uals, one can see that the model provides an excellent fit 
to the data. The posterior distributions of abundances 
are also shown for the abundances and grain size (Fig. 
3). In this case, hexahydrite seems to be the main com-
pounds with its abundance constrained as 0.82 +0.03/-
0.04 (median value with lower and upper equivalent 1σ) 
and a grain size of 3700 +500/-400 µm. Crystalline wa-
ter ice is the second compound with its abundances con-
strained as 0.10 +/- 0.02 and a grain size of 500 +100/-
70 µm. SAO and magnetite are both very scarce with a 
median abundance of 0.04 +/- 0.02. The grain size of 
SAO well constrained with a value of 90 +/- 6 µm in 
contrast to magnetite grain size with a value of 630 
+930/-450 µm as showed figure 3. 

Conclusion: In the light of these preliminary results, 
hexahydrite seems to be the major compound, with 
about 80% of volumetric abundance. The presence of 
hydrated salt close to dark lineaments at the trailing 
Anti-Jovian hemisphere location is consistent with [14]. 
Given the relatively small size of the grains (around 
1cm), this enrichment may be due to external processes 
(sputtering) and may not be representative of the full ice 
shell of Europa.  

 
 

Figure 2- Results from analysis of a spectrum from observa-
tion “14e006ci”(-27.65°N, 175.00°E). This top plot shows the 
best fit (in red) for the fit to data (dark, with 1 sigma noise).  
The bottom plot shows the residuals. 

Figure 3 -. Plots of the posterior distributions for the abun-
dances (left) and grain size (right). The dashed lines are the 
median values and 1 sigma upper and lower bounds. 
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