A Predicted Dearth of Hypervolatile Ices in Oort Cloud Comets. C.M. Lisse^a, G.R. Gladstone^b, J.K. Steckloff^c, L.A. Young^d, D.P. Cruikshank^e, S.A. Stern^d, J.T. Keane^f, O.M. Umurhan^e, J.W. Parker^d, R.P. Binzel^g, A.M. Earle^g, Y.J. Pendleton^e, S.A. Sandford^e, M. Horanyi^h, H.A. Weaver^a, A.F. Cheng^a, R.L. McNutt^a, M. El-Maarryⁱ, J.M. Moore^c, I. Linscott^j, B. Schmitt^k, J.J. Kavelaars^l, D.T. Britt^m, C.B. Olkin^d, W.M. Grundyⁿ ^aJHU Applied Physics Laboratory, ^bSwRI San Antonio, ^cPSI, ^dSwRI Boulder, ^eNASA Ames Research Center, ^fCaltech, ^gMIT, ^hLASP, ⁱBirkbeck Univ. London, ^jStanford, ^kUniversité Grenoble Alpes, ^hNRC Herzberg Inst, ^mUCF, ⁿLowell Obs. *e-mail: carey.lisse@jhuapl.edu **Introduction.** [1] presented state of the art saturation vapor pressure (P_{sat}) and gas production rate (Q_{gas}) curves for ices expected in Kuiper Belt Objects (KBOs) to determine which solid state species could still be present in abundance in Arrokoth (2014 MU₆₉) given the 3σ upper limit for coma gas production of 10^{24} H atoms/sec from New Horizons (NH)/Alice instrument airglow observations [2,3; Fig. 1]. Assuming thermally driven sublimation over the age of the solar system, [1] went on to show that there could not be any deposits of majority hypervolatile ice species (e.g., N2/CO/CH4) in any substantial abundance on the surface of Arrokoth. Rather, Arrokoth should be covered with refractory H-bonded ice species such as CH₃OH, HCN, and H₂O that remain thermally stable against sublimation into space over Gyrs at local temperatures. This finding is consistent with the NH/LEISA and NH/MVIC findings of a surface uniformly rich in tholins, methanol ice and likely water ice [4]. Figure 1 – Species specific 3-sigma Q_{gas} production upper limits for Arrokoth, as most recently determined by [3] (horizontal colored dashed lines). Also plotted are the gas production rates for different expected icy species found in comets and KBOs (colored curves), as well as the local equilibrium temperature at 45 au from the Sun for Arrokoth and its sub-solar (noon-time) temperature (vertical dashed lines). Hypervolatile species like N_2 , CO, and CH4 (red) violate the new NH/Alice upper detection limits by 6-8 orders of magnitude. Formation and condensation in molecular clouds, followed by loss after disk clearing. The hypervolatile ices can be identified as [5]'s small, apolar ices. Unable to bind well to dust grain surfaces, these apolar ice molecules form from gas-phase reactions and condense directly to ice in dense molecular clouds at extremely cold temperatures (~10-20 K), where thermal energy can be dominated by Van der Waals interactions. An important "Sublimative Epoch" of our early solar system was thus right after the so-called "disk clearing" time, when enough of the gas (>90%) was removed from the solar system's T-Tauri accretion disk for it to become optically thin to optical radiation out as far as the Kuiper Belt. Starting by 10 Myr after the beginning of the solar system [6], the direct insolation led to a sudden spike in local KBO surface temperatures from $10-20~\rm K$ to the modern dayside/nightside surface temperatures of $60/30~\rm K$ [7] and interior core temperatures of $\sim 40\rm K$ [1,8], and a wave of bulk hypervolatile ice sublimation and loss over the next $\sim 10-30~\rm Myr$ [9-11]. Consistency with Icy Planetesimal Observations. Our predicted lack of bulk KBO hypervolatile ices is consistent with the dearth of substantial hypervolatile member objects emission from end 45P/HMP, 46P/Wirtanen, and 103P/Hartley 2 (small comets near the end of their lives emitting chunks of their cores, [12-14]; with the lack of any marked increase in hypervolatile emission seen from the recently split comets 73P/SW3 [15] nor from 17P/Holmes [16]; and with the low but finite levels of comet hypervolatile coma gas species (CO at 0.5 - 25% vs water, N₂ at 0.1 - 0.3 % vs water, CH₄ at 0.2 - 1.0% vs water, [CO + CO2] at ~20% vs water, [17-20]) being sourced from hypervolatiles trapped as interstitial impurities in cometary water and CO₂ phases [11, 21]. **Oort Cloud Stability.** Bulk hypervolatile ices can remain stable over the age of the solar system beyond 100 AU from the Sun (Fig. 2). Thus Oort Cloud comets, which spend > 99% of their orbit outside 100 AU, only sublimatively lose a small amount of their surface at each apparition (~0.5 m,[1,22]), and should be able to retain the bulk of their primordial hypervolatiles. However, compared to observations this presents a puzzle; only Oort Cloud comets C/2016 R2 [23,24] and perhaps the new hyper-distant active comets such as C/2017 K2 PANSTARRS [25,26] are known to predominantly emit hypervolatiles. This handful of comets represents a negligible (~10⁻³) fraction of all the known Oort Cloud comets. C/2016 R2 thus represents an important example of an object outgassing just as one would expect if it was rich in nearly-pure N_2 , CO, and CH₄ ice. The lack of water vapor production from R2 is very telling – for such an active comet, with $Q_{gas} \sim Q_{CO} = 10^{29}$ mol/sec, H₂O is *always* detected in a comet. Adopting the 1.1 x 10^{28} mol/sec water upper limit of [23], and using the observed Q_{CO} production rate of $\sim 1.1~x~10^{29}$ mol/sec and the Q_{N2}/Q_{CO} ratio of $\sim 8\%$, we see that $Q_{CO}/Q_{H2O} > 10$. This is at least 5 times higher than in any other comet, but as expected for a body with T ~ 20 K set by sublimative cooling of CO and N_2 (Fig. 2). Further, the observed Q_{N2}/Q_{CO} ratio, indicative of the relative coma abundance of N_2 vs CO, is close to the solar N:C*N:O atomic abundance ratio product [27-29], as one would expect for a mix of PPD ices. Figure 2 – Q_{gas} vs Temperature curves for species expected in comets and KBOs (colored curves). Horizontal dashed lines: values of the thermally driven outgassing rates at which an icy species is depleted in 1,10,100,1000, 4600, and 12,000 Myrs for an Arrokoth-sized body. These rates are much slower than the loss rate of a piece of ice into free space, as they include an allowance for an overlying lag layer with thermal diffusivity = $3 \times 10^{-7} \, \text{sec}^2/\text{m}$ impeding the flow of heat and gas into free space from the interior [7-9]. Top axis: heliocentric distance from the Sun for a blackbody at local thermal equilibrium temperature T. From these curves and constraints, one can see that hypervolatile ices CO, N_2 , and CH₄ are stable in cold, dense molecular clouds and in modern KBOs residing beyond ~100 AU from the Sun, but were lost by ~20 Myr after Arrokoth's formation. **Oort Cloud Emplacement.** By the same arguments given for the lifetime of Arrokoth's hypervolatiles, Comet R2 must not have remained for long (< ~30 Myr) after disk clearing in the giant planet/KB region of the solar system, otherwise it would have lost its bulk hypervolatiles. [1] thus concluded that R2 must have been created and scattered into the Oort Cloud within the first ~40 Myr of the solar system's existence. Unlike the Kuiper Belt, which is at or near to the edge of the original PPD, the Oort Cloud is a later construct, formed of billions of icy planetesimals that were scattered out onto nearly parabolic, barely bound, ~million year orbits [30]. Most current models (e.g., [31-33]) favor populating the Oort Cloud around the time of the 2:1 Jupiter:Saturn giant planet orbital instability, at 100 - 1000 Myrs after the beginning of the solar system, via Neptune's scattering of planetesimals from the outer solar system into the Cloud. Thus, with tscattering > thypervolatile loss, we can expect that the large majority of Oort Cloud objects to have been depleted of bulk hypervolatile ices. There will be exceptions to this rule. A few (< 1%) very extraordinary bodies, like R2, may have been quickly (in < 40 Myrs' time) inserted from the giant planet region. These few bodies, if as large as R2 (R_{nuc} ~15 km), can then endure thousands of orbits' worth (i.e., Gyrs) of hypervolatiles loss upon perihelion passage. [34] have also suggested that free-flying hypervolatile rich fragments of large dwarf planet surfaces (such as Pluto's) could be created via energetic impacts during the 2:1 Jupiter:Saturn resonance epoch, and then scattered into the Oort Cloud along with multitudes of "normal" KBOs. Again the hypervolatile rich surface fragments will be a minority compared to the bulk hypervolatile stripped implanted KBO objects (~0.1%). **Implications and Observational Tests.** The prediction that Oort Cloud comets should be depleted in majority species hypervolatiles has some important implications: - (1) Hypervolatile rich comets are rare, and thus abundant hypervolatiles will not be a general characteristic of all comets, despite the current high levels of interest expressed over the phenomenon of ultra-distant active comets like C/2017K2 [25,26] - (2) If the hypervolatile rich objects came from the lucky few primitive planetesimals scattered by the giant planets, then they must have been emplaced within $\sim\!40$ Myr [7-9] and thus represent some of the first objects put into the Oort Cloud, as well as good measures of CO/N₂/CH₄ ratios in the proto-planetary disk. - (3) Obtaining quality, unbiased statistics on the frequency of hypervolatile rich Oort Cloud comets (i.e., from N_{Oort} , hypervolatile rich/ N_{Oort} , normal comet) can provide important constraints on models of early (< 40 Myr) versus later (0.1-2.0 Gyr) emplacement of objects into the Oort Cloud from the giant planet & Kuiper Belt regions of the solar system. **References.** [1] Lisse+2021, *Icarus* 356, 114072; Lisse+2022 PSJ, submitted [2] Stern+ 2019, Science 364, 9771 [3] Gladstone+2022, PSJ, accepted [4] Grundy+2020, Science 367, aay3705 [5] Ehrenfreund+2001, JGR 106, 33291 [6] Ercolano & Pascucci 2017, R Soc Open Sci. 4, 170114 [7] Bird+2022, PSJ, submitted [8] Umurhan+2022, PSJ, accepted [9] Steckloff+2021, Icarus 356, 113998 [10] Prialnik 2021, BAAS 53, 307.10 [11] Davidsson2021, MNRAS 505, 5654 [12] A'Hearn+ 2011, Science 332, 1396 [13] DiSanti+ 2017, AJ 154, 246 [14] Steckloff & Samarasinha 2018, Icarus 312, 172 [15] DelloRusso+2007, Nature 448, 172 [16] DelloRusso+2008, ApJ 680, 793 [17] Bockelée-Morvan+2004, Comets II, 391 [18] A'Hearn+ 2012, ApJ 758, 29 [19] Bockelée-Morvan & Biver 2015, Proc IAU 11, 321 [20] Mumma & Charnley, 2011, ARAA. 49, 471 [21] Jewitt2009, AJ 137, 4296 [22] Lisse2002 EMP 90, 497 [23] Biver2018, A&A 619, A127 [24] McKay+2019 AJ 158, 128 [25] Jewitt+2021, AJ 161, 188 [26] Yang+2021, ApJLett 914, L17 [27] Anders & Grevesse 1989, GCA 53, 197 [28] Lodders 2003, ApJ 591, 1220 [29] Asplund+2005, ASP 336. 25 [30] Boe+2019, Icarus 333, 252 [31] Brasser & Morbidelli 2013, Icarus 225, 40 [32] Morbidelli & Nesvorny 2020, The Trans-Neptunian Solar System, 25 [33] Garrod2019, ApJ 884, 69 [34] Desch & Jackson 2021, JGR Planets 126, e2020JE006807