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Introduction: The Dragonfly mission, selected
through NASA's New Frontiers program, will improve
our understanding of Titan's chemistry and geology by
sending a rotorcraft to its equatorial dune fields in the
mid-2030s (expected launch in 2027) [1, 2]. The land-
ing site is in the Shangri-la dune field near the 80-km-
wide Selk crater (6.5°N, 161.5°E), which features trac-
es of erosion by both aeolian and fluvial processes [3,
4]. The region has been imaged by the Cassini RADAR
(Ku band, 2.2 cm) in Synthetic Aperture Radar (SAR)
mode at incidence angles varying from 5° to 72° and
polarizations varying from parallel to perpendicular (to
the incidence plane). We take advantage of this dataset
to fit backscatter models and extract new constraints on
the dielectric constant, root-mean-square (rms) slope,
and scattering albedo.

Methods: The region of interest around Selk crater,
defined by [2], has been imaged by the Cassini
RADAR on 9 occasions, brought together in the mosa-
ic shown in Fig. 1a. From this data, we mapped 6 ter-
rain units (Fig. 2b): crater rim, crater ejecta, hummocky
terrains, plains, dune fields, and dark terrains (in order
of decreasing radar brightness). These terrains are
largely the same as those identified and mapped by [2]
and [4], with the exception of the “dark terrains”,
which we define as very radar-dark regions located
near dune fields but without clearly apparent dune
structures. Within dune fields, the dunes and interdune
regions were separated using the method described in
[5], adding two more terrains (which are combined in
the dune fields unit). The normalized backscatter cross
section (c° values of each unit within a 0.25° grid
were averaged and plotted against the incidence angle
in order to assemble backscatter curves.

The dominant mechanism contributing to radar
backscatter varies with incidence angle: quasi-specular
scattering on facets oriented towards the radar domi-
nates at low (<30°) angles, whereas at higher angles
diffuse scattering from surface roughness and subsur-
face structures takes over. The quasi-specular compo-
nent has the dielectric constant and surface rms slope
as parameters, and tests three different scattering laws
previously applied to Titan: Hagfors, exponential, and
Gaussian [e.g., 6, 7]. For the diffuse component, we
used either the empirical Acos" model [6, 7] or the
simple but physical single-scattering Swift model [8],
which can also derive the dielectric constant from the

degree of polarization. All six quasi-specular + diffuse
model combinations were fit to the data to find the best
dielectric constant, rms tilt angle, and scattering albe-
do. We note that the rms tilt angle is measured at the
wavelength scale (centimetric) and could be due for
example to coarse gravel. Although absolute values of
these parameters are model-dependent, the relative
values from one terrain to another indicate real varia-
tions in surface properties.

Results and interpretations: The parameters de-
rived for each terrain are represented graphically in
Fig. 2. The interpretations of these values are summa-
rized below:

e Dunes and plains exhibit the same microwave scat-
tering properties both inside and outside the crater,
indicating likely aeolian infilling and/or crater rim
erosion bringing the same materials into the crater
as are available elsewhere.

e The crater rim is among the brightest terrains on
Titan and exhibits strong diffuse scattering, con-
sistent with an icy (low-loss) subsurface with bur-
ied scattering structures, although surface rough-
ness likely also plays a role.

e The dune fields and especially the dunes have a
low dielectric constant (between 1.5 and 2.2 medi-
an values for all models) consistent with previous
work [e.g., 6, 9, 10], a low rms tilt angle, and little
diffuse backscatter. These properties all point to
organic sand. Meanwhile, the interdune regions
have a higher dielectric constant, indicating a like-
ly icier and/or less porous surface.

e The dark regions have a low dielectric constant
and little to no diffuse scattering. This is consistent
with organic sand over depths thicker than ~1 m,
and likely corresponds to a sediment sink due to
converging winds or low topography.

e The active radar data can be used to derive the
dielectric constant not only from the shape of the
quasi-specular component, but also from high-
incidence data at different polarization angles, us-
ing Fresnel’s equations in a way similar to the
method used on passive microwave radiometry
[10]. The disparity between dielectric constants
derived from backscatter modeling (up to ~4.5 for
some terrains) and polarization studies (<2.2 eve-
rywhere) suggests either the existence of a depo-
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larizing process (surface roughness or multiple
scattering, [10]) or that the quasi-specular compo-
nent inaccurately models Titan’s surface.
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Figure 1: Left: mosaic of the incidence angle corrected SAR swaths within the region of interest. Right: geomorphological map
of the region of interest. For easy comparison with previous work, we use a color scheme similar to Malaska et al. (2016).
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Figure 2: Values of the effective relative dielectric constant (from the quasi-specular component), rms tilt angle at the wave-
length scale, and scattering albedo derived for all 8 terrains and for all 6 combinations of quasi-specular and diffuse scattering
mode. Note that the dune and interdune regions are mixed together in the dune fields unit.



