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Introduction: Ground-penetrating radar (GPR) is a
mature geophysical methodology with a wide range of
applications, from non-destructive testing and hydroge-
ology to glaciology and landmine detection [1]. Its mini-
mum operational requirements combined with its ability
to operate in dry low-conductivity media, made GPR the
most mainstream geophysical technique in planetary sci-
ence [2]. Although orbiter sounders were employed both
for lunar and Martian exploration since the early 70s, it
would take several decades for the first conventional in-
situ GPR to be deployed in Chang’E-3 mission [3]. In the
following years, GPR has been used in Chang’E-4 [4], E-
5 [5], Tianwen-1 [6] ,Perseverance [7] and it is planned
to be used in future missions such as Chang’E-7 (ex-
pected to be launched in 2024) and ExoMars (expected
to be launched in September 2022). In the current paper,
we describe a coherent interpretation scheme that utilises
an advanced hyperbola fitting scheme to infer the veloc-
ity structure of the lunar regolith at the Chang’E-4 land-
ing site. Subsequently, the estimated velocity structure
is used in reverse-time migration (RTM) coupled with
finite-differences time-domain (FDTD) method, capable
of focusing the signal subject to any arbitrary layered me-
dia. Lastly, the reconstructed migrated image is clustered
in order to accurately map the subsurface targets (rocks
and boulders) in the investigated medium.

Methodology: The arrival time from a spherical target
with radius R buried in a homogenous medium at point
B is given by t = 2

c0

√
ε (||A− B|| −R), where A is the

vector with the coordinates of the GPR unit, c0 = 3×108
m/s is the velocity of light, and ε is the relative permit-
tivity of the medium (assumed homogenous). Conven-
tional hyperbola fitting tries to find the optimum ε that
minimises the error between the measured arrival times
T ∈ Rn and the predicted ones t ∈ Rn, where n is the
number of measurements.

For a layered medium with small permittivity vari-
ations (ignoring diffraction phenomena) the two way
arrival time equals with t = 2||A−B||−R

c0d

∫ d
0

√
ε(z)dz

where d is the depth of the target. The latter can be
re-written as t = 2

c0

√
εb (||A− B|| −R) where

√
εb is

the bulk/average square root of the relative permittiv-
ity from the surface down to the depth of the target d.
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Figure 1: Top: The measured bulk permittivities using
the stochastic hyperbola fitting; and the fitted permittiv-
ity of the inverted model. Bottom: The estimated permit-
tivity profile with its uncertainty bounds.

Therefore, by applying a conventional hyperbola fitting
in N targets, we can estimate the average square root of
the relative permittivity for different depths

√
εb(di) i ∈

[1, 2, 3...N ].
Conventional hyperbola fitting suffers from non-

uniqueness in the presence of noise. In particular, mul-
tiple sets of {εb(d), d, R} can give rise to similar arrival
times, making it difficult to simultaneously estimate both
the permittivity of the host medium and the radius of the
target [8]. To mitigate that, typical hyperbola fitting as-
sumes a point target (R = 0), a rough assumption that
can greatly influence the estimated permittivity. In the
current paper, first we discretise the hyperbola manually
into w points T ∈ Rw. Subsequently, particle swarm op-
timisation (PSO) is used to minimize argmin

εb,d,R
‖|T − t||.

The mean µ = E[T − t] and the standard deviation
σ =

√
E[(T− µ])2 is assumed to be the level of noise
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Figure 2: Top: The post-migrated image using RTM for the permittivity profile shown in Fig. 1. Bottom: Segmenting
the image using the threshold methodology suggested in [10].

in our observations. Based on that, a new measurement
vector T is derived which equals with the fitted hyperbola
plus a Gaussian noise T = t + N (µ, σ2). The minimi-
sation argmin

ε(d),R

‖|T − t|| is executed again with the new

observations T and a new set of {εb(d), d, R} is derived.
The procedure is repeated for sufficient amount of times
in order to calculate the uncertainty of εb(d) and d. Via
this procedure instead of a single permittivity and depth,
the stochastic hyperbola fitting estimates the normal dis-
tribution of εb(d) ∼ N (µεb , σ

2
εb
) and d ∼ N (µd, σ

2
d).

The next step is to infer the 1D permittivity profile
of the medium based on N (µεb , σ

2
εb
) and N (µd, σ

2
d).

Discretising the permittivity in m equidistant depths
{ε(z1), ε(z2)...ε(zm)}, and using spline functions
to interpolate between different depths, results in
ε(z) = Pi(z) where z ∈ [zi, zi+1] ∀i ∈ [1, 2, 3...m− 1],
and Pi(z) is a third order polynomial. The proposed
scheme tries to find the best values of ε(zi) that minimise

argmin
ε(zi)∀i∈[1,m]

∑m
j=1

(√
εb(dj)− 1

dj

∫ dj
0

√
ε(z)dz

)2
.

The latter is executed numerous times using PSO,
each time the εb and d values are chosen randomly
subject to their statistical properties (i.e. N (µεb , σ

2
εb
)

, N (µd, σ
2
d)) as estimated via the stochastic hyperbola

fitting described in the previous paragraph. The resulting
ε(zi)∀i ∈ [1, 2, 3..m] for each PSO execution are then
used to estimate the uncertainty of the reconstructed
permittivity distribution. In particular, we derive a
Gaussian distribution N (µε(zi), σ

2
ε(zi)

)∀i ∈ [1, 2, 3..m]
that describes the probability of a permittivity profile to
be true.

The average permittivity profile µεz is then used in
RTM coupled with FDTD, in order to focus the pro-
cessed Bscan, increase the overall signal to clutter ra-
tio and map subsurface targets. RTM propagates the
waves back in time at s = 0, where the waves col-
lapse in their reflection sources. The filtered B-Scan
is denoted as B(q, s), for s ∈ [0, smax] and qk =

||〈xk, yk, zk〉||, where {xk, yk, zk} ∈ R are the coor-
dinates of the kth measurement. The first step in RTM is
that B(q, s) is reversed in time B(q, smax − s). The re-
versed traces are subsequently used as impressed current
sources Ju(q, t) = B(q, smax − s) where u ∈ {x, y, z}
is the polarisation of the receiver. To address the two-
way travel time, the velocity of the medium is set to half
the actual velocity. A TM-FDTD with second order of
accuracy in both space and time is used in the current
paper. Similar to [9], the post-migrated image is further
processed by taking its absolute value and smoothing it
by applying a Gaussian 2D filter.

Finally, the resulting post-migrated image is clus-
tered using a threshold selection method from gray-level
histograms as proposed in [9]. In the current paper, two
different clusters are considered to represent the host
medium and the buried rocks and boulders.

Results: The proposed scheme is applied to the first
100 meters of GPR data collected at the Von Kármán
crater by the Yutu-2 rover [11]. Figure 1 shows the es-
timated bulk permittivity using the stochastic hyperbola
fitting; and the estimated permittivity profile. In Figure
2, the permittivity profile shown in Figure 1 is used as
input to the RTM using TM-FDTD. The post-migrated
image is subsequently segmented using the methodology
suggested in [9].
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