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Introduction: Geologic evidence suggests that the 

icy surface of Europa could undergo either episodic or 
slow continuous reorientation with respect to the 
tidally locked state, and this has significant 
implications for the study of the global ice shell and 
the subsurface ocean [1]. The continuous reorientation 
solution is of particular interest, and has been the 
subject of several notable works [see e.g. 2,3].  

Classical analyses of tidal locking [4,5] use a 1D 
single-axis model of a planet as a rigid body, and may 
be inaccurate for understanding the motion of a 
decoupled ice shell. The icy ocean world Europa is 
well-known to be differentiated into an ice shell and 
core, partially dynamically decoupled by a subsurface 
ocean. A 2D model of independent single-axis ice shell 
and core movements thus presents a more appropriate 
first-order model, while retaining a useful degree of 
simplicity. This work discusses such an approach using 
a model previously derived for studying ice shell 
librations [6]. The new approach provides insight to 
questions about the spin state of Europa, and critically, 
the degree to which its ice shell and core can move 
independently. In addition, the potential for distributed 
geologic intrusions and mass concentrations in the ice 
shell to produce or alter dynamically significant mass 
asymmetries is also discussed. 

Background:  It has been known since the works 
of Goldreich and Peale [4,5] that a planet in an 
eccentric orbit can settle into a spin rate that is slightly 
faster than the synchronous angular velocity. In the 
final spin state, the orbit-averaged tidal torque should 
equal zero, and this happens for a planetary spin rate 
value between the periapsis angular velocity 𝜔" and 
the mean motion angular velocity 𝑛. However, if the 
planet has sufficient permanent mass asymmetry, then 
gravity-gradient torques on this asymmetry can 
dominate the tidal torque and force synchronous 
rotation. The condition for initially super-synchronous 
rotation to settle into a libration-only synchronous final 
spin state is given by the following relationship 
between orbit eccentricity 𝑒 and planetary principal 
moments of inertia 𝐶 > 𝐵 > 𝐴: 
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In the case of Europa and other icy ocean worlds, 
the ice shell and core can move independently to at 
least some degree, being dynamically decoupled by a 

global ocean. If the ocean is sufficiently deep, even full 
independent relative rotations are presumably possible. 
For this problem, constraints on the final spin states 
should depend on the properties of both the ice shell 
and core, so the simple conclusions of Goldreich and 
Peale [4,5] need to be modified. 

In Goldreich and Peale’s analysis, the dynamics of 
the planar angle from the periapsis direction to the long 
axis of the planet 𝜃 are those of a nonlinear pendulum, 
with external harmonic forcing due to the effects of 
orbit eccentricity. The study of the dynamics of the 
averaged angle 𝜂 = 𝜃 − 𝑛𝑡 (where 𝑛 is the mean 
motion) is a useful simplification for this problem, 
given by the autonomous differential equation below in 
the absence of tidal torques:  

𝐶𝜂̈ +
3
2
(𝐵 − 𝐴)𝑛1 sin2𝜂 = 0 (2) 

Note |𝜂| < E
1
 if the body is tidally locked. The above 

equation admits an energy integral 𝐸 [see e.g. 4] 
which, along with careful use of averaging, crucially 
enables simple analysis of the long-term evolution of 
the rotational state.  

In the case of Europa, there are two angles to track, 
𝜃G and 𝜃H, for the ice shell and interior (core) 
respectively. This is depicted in Figure 1 below. 

 
Fig 1. An icy ocean world differentiated into an ice shell and solid 
interior, separated by a global ocean (not to scale) 

As noted in [6], the dynamics of the averaged 
angles 𝜂G = 𝜃G − 𝑛𝑡 and 𝜂H = 𝜃H − 𝑛𝑡 are given by the 
following coupled equations: 
𝐶G𝜂̈G +

3
2
(𝐵G − 𝐴G)𝑛1 sin 2𝜂G + 𝐾J sinK2(𝜂G − 𝜂H)L = 0 

𝐶H𝜂̈H +
3
2
(𝐵H − 𝐴H)𝑛1 sin 2𝜂H − 𝐾J sinK2(𝜂G − 𝜂H)L = 0 

(3) 

where the coupling constant 𝐾J is due to the gravity-
gradient torque between shell and core. This analysis 
neglects viscous effects of the ocean layer [see e.g. 7] 
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but these are assumed to be comparatively small [6]. 
Critically, Eq. (3) is equally valid for libration, as 
studied previously in [6], and for full rotation (i.e. 
unbounded 𝜂G and 𝜂H), which was not explored. 

Analysis:  Just as Eq. (2) provides insights into the 
characteristic behaviors possible in the 1D spin-orbit 
coupling problem, Eq. (3) is useful for the 
differentiated problem. First, it can be shown that there 
is still an energy integral for the more complicated 
averaged 2D model, Eq. (3), and it is given below:  
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(4) 

This expression turns out to be very useful, as will be 
discussed further below. 

It is worth noting that ST
SU
∼ 200 for Europa, which 

limits the types of characteristic behaviors that are 
possible. The much more massive core behaves more 
regularly than the ice shell. For example, at certain 
energy levels, energy exchange between the interior 
and exterior can conceivably induce irregular rotation 
in the ice shell, while the interior simply librates with 
minimal perturbation. This is illustrated below in 
results from an example numerical simulation of the 
unforced 2D dynamics given in Eq. (3). 

 
Fig 2. Complex ice shell spin behavior, for an example with strong 
gravitational coupling and 𝐶H 𝐶GW ∼ 200. The steady librations of the 

much more massive interior are |𝜂G| < 16°. 

Despite the complexity exhibited by this system, 
the total energy of the averaged system can provide a 
useful perspective. To study how the total system 
energy relates to the permissible spin states, the 
concept of the zero-velocity curve is borrowed from 
celestial mechanics [8]. Namely, setting angular 
velocities to zero and examining the curves of constant 
values of 𝐸, for a given energy level, the range of 
reachable angles {𝜂H, 𝜂G} is externally bounded by the 
curve at that fixed energy value. This is depicted in 
Figure 3. As energy is increased from its lowest levels 
in the plot, full rotation of the ice shell becomes 
possible well before it is possible for the interior. In 
particular, it is possible to calculate from Eq. (4) the 

critical values of 𝐸 below which full rotation of the ice 
shell and interior are impossible. These are given as 
𝐸],0 and 𝐸],1 in Figure 3, where 𝐸],1 ≫ 𝐸],0. 

 
Fig 3. Example zero-velocity curves, showing cutoffs for full 
rotation of ice shell (𝐸 > 𝐸],0) and interior (𝐸 > 𝐸],1). 

This analysis suggests that if the moon starts in a 
high energy fully super-synchronous rotation state, 
energy loss due to the transient tidal torques will 
tidally lock the interior before the ice shell. In an 
extension of Goldreich’s classical analysis [4], 
averaging of the tidally forced problem over the period 
of motions of the interior could provide additional 
insights. Numerical exploration of this simple system 
is also a viable approach, further facilitated by insights 
from the 2D averaged system [6].  

The complex unsolved problem of the rotation and 
orientation history of Europa’s ice shell is one of 
coupled orbital and tidal dynamics, and also general 
3D rotations. It will also require consideration of 
surface features to look for signatures of rotation, when 
possible [see e.g. 9,10]. However, simplified models 
can be quite useful, particularly when they provide 
reasonable constraints, and the above analysis is thus 
more relevant for Europa and similar worlds than the 
classical works of Goldreich and Peale. 
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