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Introduction:  Multivariable regression models are 

increasingly developed for automatic characterization 
of geological samples in the planetary context. This is 
particularly true in contexts such as elemental 
abundance on Mars, where chemometric models have 
been developed for the ChemCam and SuperCam 
instruments [1- 2].  

In the simplest case, a prediction model seeks to 
approximate the expected value of an outcome as a 
function of one or more explanatory variables. Such a 
model for continuous outcomes may be as “simple” as 
a multivariable linear model, or as complicated as a 
neural network. Regardless of the model, however, the 
final objective is to use the developed model for the 
prediction of the outcome in samples for which the 
value is unknown.  

While the ease of data acquisition for model 
calibration is clear in many fields, generating data for 
planetary exploration remains a laborious process and is 
often resource intensive. Therefore, “convenience 
samples” (i.e., a dataset that has not been systematically 
developed) are often used to develop a calibration 
model. While useful in principle, such a sample may 
give rise to methodological challenges in model fitting 
such as overfitting and lack of parameter precision.  

Overfitting refers to a situation in which there are 
too many degrees of freedom [3]. In other words, it is a 
situation in which a model lacks the necessary sample 
size, relative to the number of parameters. This may 
then lead to a false sense of security that the model in 
question will provide reasonable estimates of external 
data. It is therefore necessary that when calibrating a 
model, the necessary sample size be obtained. The rest 
of this abstract is focused on how to determine what this 
minimum is.  

Methods: Consider, in the simplest case, a 
multivariable linear model of the form  

 
𝑌! = 𝛽" + 𝛽#𝑋# + 𝛽$𝑋$ +⋯+ 𝑒! (1) 

 
for 𝑖 = 1,… , 𝑛 observations, such that 𝑒! ∼ 𝑁(0, 𝜎$). 

Given such a model, we wish to find the minimum 
sample size 𝑛%!& for a given number of predictor 
parameters 𝑝 such as the risk of overfitting is 
minimized. 

Coefficient of determination. Previous work has 
suggested that to minimize the risk of overfitting, the 

difference between the apparent coefficient of 
determination 𝑅$ and the adjusted coefficient of 
determination 𝑅'()$  should be small (e.g., at most 0.05) 
[4]. We define this objective function as  

 
Δ = 𝑅$ − 𝑅'()$    (2) 

 
We note that  
 

𝑅'()$ = (1 − 𝑅$) (&+#)
(&+-+#)

  (3) 
 

is an approximately unbiased estimator of 𝑅'()$  [5]. 
Then,  
 

𝑅$ =
.!"#
$ (&+-+#)/-

&+#
  (4) 

 
Subsequently, plugging (4) into (2), we find that 
 

Δ =
-(#+.!"#

$ )

&+#
  (5) 

 
and that 
 

𝑛%!& ≥ 1 +
-(#+.!"#

$ )

0
  (6) 

 
Global shrinkage factor. As an alternative approach, 

we consider the so-called Global Shrinkage Factor. In 
this approach, following the fitting of eq. 1, a shrinkage 
factor 𝑆 is applied to the estimated parameters. This is 
effectively a penalization method used to minimize 
overfitting. Subsequently, we have a revised version of 
eq. 1,  

 
𝑌! = 𝛽"1 + 𝑆(𝛽#𝑋# + 𝛽$𝑋$ +⋯) (7) 

 
where 𝛽"1  is a revised intercept and 𝑆. In this work, we 
proceed with the Copas estimator which is defined as 
 

𝑆2 = 1 − -+$
3.

   (8) 
 

where  𝐿𝑅 is the likelihood ratio between the null model 
and the full model. Moreover, we note that  
 

𝐿𝑅 = −𝑛 log(1 − 𝑅$)  (9) 
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from which  
 

𝑆2 = 1 + -+$
& 456(#+.$)

  (10) 
 

Thus, applying eq. 4,  
 

𝑆2 = 1 + -+$

& 4567#+8
%!"#
$ ('()(*),)

'(* 9:

 (11) 

 
It therefore follows that we can find the minimum 
sample size by finding the value of 𝑛 that satisfies a 
given threshold of 𝑆2. That is,  
 
 

min
&
@1 + -+$

& 4568
-*(%!"#

$ .('()(*)

'(* 9
≥ 𝑆2A(12) 

 
which can be easily solved numerically.  

Results: For the purpose of illustration, we assume 
that we are interested in developing a dataset consisting 
of spectra of geological samples, for example from 
Laser-induced Breakdown Spectroscopy (LIBS). As is 
common in chemometric methods, such a dataset might 
first be transformed into a latent space, by Principal 
Component Analysis, for example, such that the number 
of dimensions is substantially reduced. Therefore, let 
𝑝 = 25, a not unreasonable assumption.   

In previous work, a value of Δ ≤ 0.05, and 𝑆2 ≥ 0.9 
has been suggested [4]. What then remains is to 
determine 𝑅'()$ . The present approach requires that 𝑅'()$  
be assumed a priori, since in general, the dataset has not 
yet been developed. How to select 𝑅'()$  is a 
multifactorial decision; however, it has been suggested 
that when the explanatory variables are mechanistic in 
their effect on the outcome, 𝑅'()$ = 0.5 is reasonable 
[4]. Such is the case in LIBS for example, where the 
emissions are correlates of elemental abundance. 
Therefore, we can now apply eq. 6 and eq. 12 to 
calculate the minimum sample size required for the 
calibration set, based on the two criteria discussed 
above. Specifically, we find that based on Δ, 

 

𝑛%!& = 1 +
25(0.5)
0.05 = 251 

 
and based on 𝑆2, 
 

𝑆2 = 1 +
25 − 2

𝑛 logG1 − H0.5(𝑛 − 25 − 1) + 25𝑛 − 1 IJ
 

 
such that 𝑛%!& = 269. Thus, to err on the side of 
caution, with 25 predictors, we would choose the greater 
of the two sample sizes, that is, we need a sample size 
of 269 to minimize the risk of overfitting.  

Discussion:  Despite the fact that minimum sample 
size calculations are commonplace in many fields such 
as medicine and biostatistics, such calculations remain 
scare in chemometrics and space science. However, we 
have demonstrated that such calculations are both 
essential and relatively straightforward to determine.  

Nevertheless, it may be the case that the calculated 
sample size is infeasible (e.g., due to cost of sample 
acquisition). In such a case, we suggest that the number 
of dimensions be reduced, while keeping the thresholds 
(Δ and 𝑆2) constant. Moreover, such calculations often 
require some a priori assumptions (e.g., what 𝑅'()$  
might be). While we have suggested a value of 0.5 for 
mechanistic relationships are frequent as is the case in 
spectroscopy, it is advisable that when establishing 
minimum sample sizes, researchers refer to past 
literature (e.g., previous relevant calibration models).  

Lastly, the present work has been presented in the 
context of linear models; however, the principles are 
easily extendible to more complex models as might be 
observed in Partial Least Square Regression, for 
example. In more complicated cases, even if a closed 
form solution is not attainable, sample size simulations 
are easily conducted to the same end.  
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