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Abstract: The mechanical properties of small
body surfaces can be estimated from accelerometer
measurements of spacecraft landings. Here we imple-
ment and test, using a large database of experimental
data, a probabilistic approach with a Machine Learning
algorithm to first predict, and then interpret, accelerom-
eter data.

Introduction: During the past decade, there have
been many small body missions targeting asteroids
such as the Origins-Spectral Interpretation-Resource
Identification-Security-Regolith Explorer (OSIRIS-
REx) mission [1], the Hayabusa-2 mission [2], and
the recently launched Double Asteroid Redirection
Test (DART) mission [3]. Understanding the surface
interactions helps to reduce the risk of space missions
with lander components, but the landing event itself
can actually be used for scientific studies of the asteroid
surface properties. As asteroids are often covered by
regolith [4], landing can be studied as a low-velocity
impact onto granular material under reduced gravity
conditions. However, it is important to investigate and
understand the link between surface properties and the
landing behavior.

Experimental Set-up: Experimental trials have
been conducted (with the terrestrial gravity set-up
shown in [5], and Fig.1).
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Figure 1: Terrestrial gravity set-up to study impact onto
granular material.

Accelerometers have been attached inside the projec-
tile at the center of its mass to obtain the acceleration
profile during the collision of the projectile dropped
onto the granular surface. The granular materials that
have been used are quartz sand, and three different sizes
of glass beads (1.5, 5 and 10 mm diameter). All the
materials have been characterized by computing their

different properties: angle of repose tests to infer the
internal friction angle, the grain diameter, the coeffi-
cient of sphericity (height divided by the length), the
factor of angularity, the roughness, and the bulk density
measured for each trial. Two types of projectiles have
been used: spherical, and cubic (face, side and corner
position). The impact database now contains data from
more than 300 experimental trials, with collision veloc-
ities between 0.23 m.s−1 and 2.15 m.s−1.

As the impacts of landers are in reduced gravity con-
ditions for space missions, it is important to note that
this changes the dynamics of the projectile. In [6], a
Froude number scaling has been shown to be success-
ful: an Earth-gravity impact presents the same behavior
as a reduced gravity impact, if those have an equivalent
Froude number.

Distinguishable acceleration profile: The shape,
duration, amplitude and frequency of oscillations of
the acceleration profile obtained from the accelerom-
eters are highly dependent on the granular material (see
Fig.2).

Figure 2: Example of different acceleration profiles
during landing with the sphere projectile done for a col-
lision velocity at 1.15m.s−1.

Figure 3:
Penetration
depth as a
function of
the collision
velocity at
impact for
all trials with
the sphere
projectile.
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From the double integration of the acceleration pro-
file (example shown in Fig.2), the distance traveled by
the projectile can be obtained. Therefore, after impact,
the depth can be deduced (shown in Fig.3). For larger
collision velocities, the projectile penetrates deeper into
the material. The penetration depth also depends on
the kind of material the projectile is dropped into - the
depth is shallower for a denser and higher friction ma-
terial such as sand.

Machine Learning algorithm: We have devel-
oped a Machine Learning tool to estimate the surface
properties of granular material from a single recorded
acceleration profile. This is a complementary to the
approach of using a physical collisional model [6, 7],
consisting in a force law with a depth-dependent static
force and a velocity-dependent inertial drag. This tool
uses Random Forests from the Scikit-learn Python li-
brary [8] as a Machine Learning algorithm. First we de-
velop the forward problem to predict the characteristics
of the acceleration profile from known surface proper-
ties. Then we use the inverse problem to estimate the
surface properties from the acceleration profile.

Forward problem results: Inputs for the algo-
rithm are the collision velocity and the surface proper-
ties during the experimental trials such as the granular
material bed height, the grain diameter, the bulk den-
sity and the internal friction coefficient. The outputs
are predictions of the peak acceleration, the collision
duration and the maximum penetration depth. In our
approach Random Forests solve a regression problem
by splitting the data into training and testing sets. First
of all, the training data is used to fit the Random Forest
model and then the testing data is used to evaluate the
tool’s performance. The testing set size is defined as
25% of the available data.

Performance assessment of the Machine Learning al-
gorithm gives values of the coefficient of determination
R2 of 0.95, 0.68, 0.92 for the collision duration, max-
imum penetration depth and peak acceleration, respec-
tively (R2 = 1 is the best possible score outcome; see
[8] for the details). This means that, while the algorithm
predicts the collision duration and the peak acceleration
with a good level of confidence, it has a harder time es-
timating the maximum penetration depth. Fig.4 shows
the true and the estimated values of the peak acceler-
ation and the collision duration from the training data
set. The algorithm successfully differentiates between
the different types of material.

We find that the dominating parameters influencing
the collision behavior are the collision velocity and the
internal friction coefficient, as expected from previous
studies [e.g., 5, 7].

0.06 0.08 0.10 0.12 0.14
Collision Duration (s)

10

20

30

40

50

Pe
ak

 A
cc

el
er
at
io
n 
(m

/s
2 )

Training estimations
Sand
Sand Pred
Glass 1.5
Glass 1.5 Pred
Glass 5
Glass 5 Pred

Figure 4: True values (circles) and values estimated
from Machine Learning (crosses) of the peak acceler-
ation and the collision duration. Lines join every true
and estimated pair.

Conclusion and future work: We have imple-
mented and tested a Machine Learning algorithm to
predict and interpret accelerometer data. The algorithm
predicts the collision duration and the peak acceleration
with a good level of confidence, but the performance
estimation is lower for the maximum penetration depth.
Machine Learning is a promising technique to approach
the problem of estimating the acceleration profile from
the surface properties and the collision velocity. Results
for the inverse problem in which we estimate the sur-
face properties from the acceleration data will be shown
during the conference.

This tool strongly depends on the quality and quan-
tity of the available data; a better and more reliable
estimator can be obtained by using a wider variety of
granular materials and projectiles. This way, we will
be able to better identify the surface properties for fu-
ture missions such as Hera [9] and the MMX rover [10].
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