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Introduction:  Deep learning (e.g. [1]) 

convolutional neural networks were trained to 

discriminate meter scale variations in surface texture in 

satellite images of planetary surfaces [2]. Two versions 

of the model were trained, one classifying surface 

textures and aeolian bedforms in HiRISE images of 

Mars [3]. The second to discriminate between blocky 

ejecta and textures indicative of impact melt in LROC-

NAC images of the Moon [4]. 

An ever increasing volume of remote sensing data 

is being returned from the Moon and Mars, and while 

this has the potential to allow large scale mapping 

efforts at a greater spatial resolution than ever before, 

it is increasingly challenging for all relevant data to be 

surveyed in a reasonable amount of time.  

The networks classify surface textures based on 

morphological criteria rather than making 

determinations of perceived geological origin. 

Automating the production of a geological map is not 

yet possible and would be counter-productive, since 

the purpose of a mapping effort is as much to build 

understanding of the geological history of a site 

through discussion and exploration as it is to classify 

the surface. Rather our aim is to use machine learning 

to augment the human mapping workflow, and speed 

up the initial surveying needed for such an effort. A 

network performs “triage” on unmanageably large 

datasets, indicating to a human operator areas where 

predefined surface texture assemblages indicate that 

features of interest could be present.  

NOAH-H:  The Novelty or Anomaly Hunter – 

HiRiSE (NOAH-H) [5] was developed as part of the 

ExoMars Rosalind Franklin [6] landing site selection 

process. It was trained on ~1500 example framelets, 

selected from across Arabia Terra. It performs 

semantic segmentation at a pixel scale, identifying 

surface textures as one of 14 ontological classes (fig 

1). Seven surface classes define roughness types, six 

classes describe aeolian bedforms and the final class 

describes patches of boulders.   

The classification scheme is hierarchical. Care was 

taken to ensure that the class definitions were purely 

morphological, providing a robust descriptive level. 

These descriptive classes were then grouped into 

thematic categories such as bedrock, non-bedrock etc. 

to form the interpretive layer of the system. This 

ensures that the classification does not require 

contextual evidence which would be unknown to the 

network. While still providing the scientist the 

information needed for interpretation.  

 
Fig 1: HiRISE image classified using NOAH-H. a) 

and b) Classified raster, c) and d) original HiRISE 

image, e) and f) translucent classification overlain on 

HiRISE image, g) aeolian bedforms over rugged 

bedrock, h) large and small bedforms, i) identification 

of fractures. Areas of different surface texture are 

indicated, though the boundaries might need further 

refinement by a human mapper. In the case of 

dispersed features such as the large aeolian bedforms, 

the results were found to reliably segment the features.  

Fig. 1 shows an example where aeolian bedforms 

are reliably segmented from surfaces of various 

classes. The model is also good at identifying regions 

of fractured ground. Different roughness classes are 

used to distinguish smoother (most likely non-bedrock) 

terrains, from rougher ones (interpreted as bedrock).  

Despite being trained on images from Arabia Terra, 

the NOAH-H system proved transferable to other areas 

of Mars where a similar suite of surface textures 

predominate. Images of the NASA Mars 2020 [7] 

landing site at Jezero Crater were successfully 

classified. This allowed for comparison with in-situ 

images from the Perseverance Rover and Ingenuity 

Helicopter. This analysis corroborated the results of 

the machine learning classification, suggesting that the 
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texture classes observable in orbital HiRISE images 

correspond well with features on the ground [8]. Once 

the ExoMars rover lands at Oxia Planum, similar 

comparisons will be made for the training site. 

Classification of images from Jezero also allowed 

for a direct comparison between our classification and 

human made geomorphological maps [9], since the 

area was well studied prior to landing. When our 

classes were grouped appropriately, a good 

correspondence was found between the two products.  

Our results suggest that the NOAH-H system is a 

very useful tool for highlighting the textural changes 

which planetary geologists look for when creating a 

geomorphological map. NOAH-H can be used to 

identify regions of different classes at the pixel-scale, 

which can then be more generally characterized or 

summarized by a human mapper. 

For some landforms, in particular the larger aeolian 

bedforms, NOAH-H was found to be capable of very 

precisely segmenting individual features, producing 

data which could form part of a manual mapping effort 

with little further human refinement. These bedform 

maps are now being used to constrain the aeolian 

history of Oxia Planum [10]. 

NOAH-L:  NOAH for LROC-NAC is presently 

being developed. This extension of the project aims to 

test a more complex test case, by training the network 

to distinguish between impact melt and dry blocky 

ejecta around young lunar craters. This involves 

considerations not present for the martian case, such as 

the effect of solar incidence angle, which is much more 

variable in LROC-NAC images than in HiRISE. 

Eleven ontological classes were used, covering six 

melt-related textures and a further five counter 

examples. Two classes represented areas covered by 

small boulders, and larger, isolated “megablocks”, with 

dry granular flows forming the final class.  

The aim was for each class to be morphologically 

distinct. However the more focused research question 

means that more contextual information may be 

required to distinguish melt related landforms from 

morphologically similar features produced through 

other processes. Each “melt” class was defined as a 

component of a broader impact melt assemblages. 

Thus a fractured terrain in proximity to flow features 

can be identified as being a potential indicator of melt, 

while fractures elsewhere in the image can potentially 

be disregarded. Work is underway to test this 

approach.  

Discussion: In addition to the scientific outputs of 

this project, these case studies have provided insight 

around framing geomorphological questions in a way 

which will be approachable with a semantic 

segmentation methodology. Care must be taken when 

conceptualizing a research question, with the 

capabilities of the system in mind.   

All geomorphology is a mixture of description and 

interpretation. The former can be approached as a 

semantic segmentation task, whereas the latter requires 

additional situational and contextual evidence which 

cannot be incorporated into a network via training on 

labelled frames. This limits the extent to which a 

machine learning system can (currently) replicate the 

human workflow. Its ability to recognize and identify 

features is impressive, however any discrimination 

which relies on broader context, or an understanding of 

specific geological processes remains challenging.  

For example, when trained to identify the lobate 

margins of impact melt flows, the networks recognize 

the features, and perform well at locating more. 

However, they also detect other “arcuate edges”, which 

occur at many scales and through many processes. The 

system does not appear to spontaneously assimilate the 

contextual evidence that a human would use to pick 

out a lobate flow front.  

This can be solved in post processing by looking 

for assemblages of landforms, and only selecting those 

arcuate edges which are found in proximity to other 

melt indicative features. However, equifinality remains 

a major challenge, as “false friends” for these other 

features exist as well.  

Where the system works best is when classifying 

structures like boulder fields, and aeolian bedforms. 

These are clear discrete features, and the boundaries 

between these classes and other are not “fuzzy” since 

few comparable features emerge by other processes.  
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