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Introduction and background information: The 

growing number of images acquired by the Martian 

satellites together with Deep Learning algorithms 

caused development of automated approaches for 

searching various landforms on Mars. Since 2006, with 

the start of the Mars Reconnaissance Orbiter (MRO) 

mission, we are constantly receiving high-resolution 

images of Mars’s surface. The MRO Context Camera 

(CTX) is currently orbiting Mars and acquiring gray-

scale images at a resolution of ~5 m/pixel [1]. CTX 

provides geological context and distinguishes critical 

future science targets for two other MRO instruments, 

the High Resolution Imaging Science Experiment 

(HiRISE) and Compact Reconnaissance Imaging Spec-

trometer for Mars (CRISM). Above 90,000 CTX im-

ages have already covered the entire planet. This high 

number of images is difficult to process for the small 

planetary remote sensing community 

Therefore, automated detection methods have been 

rapidly employed, most of all for the identification of 

impact craters [2,3] and block falls [4]. In Deep Learn-

ing, the popularity of Convolutional Neural Networks 

(CNNs) is still increasing as an alternative to manual 

mapping and analyzing visual imagery. The major ad-

vantage of CNNs compared to other image classifica-

tion algorithms is their independence from prior 

knowledge and human intervention in feature extrac-

tion as CNNs use automated learning for filter optimi-

zation. A comprehensive study of recent 

CNNs applications and advantages was 

provided by DeLatte at al. [2]. CNNs have 

been already successfully used on Mars for 

the automated detection of geological land-

forms such as volcanic rootless cones and 

transverse aeolian ridges by Palafox et al. 

[5]. They have shown that CNNs have bet-

ter precision and recall in testing data than 

traditional classifiers based on Support 

Vector Machines (SVMs).  

In the last decades, the cone-like struc-

tures on Mars garnered interest [6,7 and 

references therein]. In some cases, the 

origin of these structures is still discussed 

[8], but two major types include volcanic 

(e.g., scoria cones, rootless cones, and 

phreatomagmatic tuff cones) and sedimentary (e.g., 

mud volcanoes). Although the cones of different ori-

gins show various morphological characteristics 

[6,8,9], after their identification on the surface of Mars, 

more detailed studies are needed to fully reconstruct 

their origin (e.g., spectral analysis of CRISM [8,10]). 

Common involvement of water (groundwater or perma-

frost) and heat released by volcanic activity (e.g., 

magma chamber, lava flows) during cone formation 

may result in the activation of hydrothermal circulation 

in the vicinity of the cone-like structures [11]. For ex-

ample, on Mars, the hydrothermal mineralization asso-

ciated with scoria cones has been already documented 

by Brož et al. [10] within the Coprates Chasma volcan-

ic field. Whereas the formation of scoria, rootless, or 

tuff cones is related to the interaction between mag-

ma/lava and groundwater, likely resulting in high-

temperature fluid circulation, on Earth, the mud vol-

canism might be also controlled by the heat released 

from magma intrusion accompanied by low-

temperature hydrothermal circulation [12,13]. In addi-

tion, some cone-like structures on Mars might be 

formed by the hydrothermal venting as suggested by 

Lanz and Saric [14]. The hydrothermal circulation can 

also be triggered by moderate or large impact events 

(craters >5–10 km diameter) [15,16].  

Therefore, mapping pitted cone fields of various or-

igins and large impact craters is crucial to provide 

Figure 1: (A) Testing image of an unnamed area located near Noctis Fossae 

[7]. The marker on the insert shows the location of testing area on the topo-

graphic map of Mars. (B) The post processing map showing segmentation 

results with the morphological features classified into classes such as pitted 

cones (green), impact craters (yellow), and background (violet). 
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more constraints on hydrothermal and related ore-

forming processes on Mars. To reduce the mapping 

time of these landforms, we have developed an auto-

mated algorithm for searching and identifying cone-

like structures and impact craters on Mars using Con-

volutional Neural Networks on the CTX global mosaic 

of Mars. 

Method: We used the preliminary CTX image mo-

saic (beta01 version) created by the Caltech Bruce 

Murray Laboratory (available at: http://murray-

lab.caltech.edu/CTX/). All images applied for training 

and evaluation of the code were extracted from the 

mosaic using ArcMap software on the scale of 

1:500,000. To obtain a sufficient number of cone-like 

structures that can be used for training, we implement-

ed most of the documented Martian volcanic fields of 

scoria cones such as Ulysses Colles, Hydraotes Colles, 

Coprates Chasma, and Noctis Fossae [6,7] as well as 

mud volcanoes of Chryse Planitia [17]. To evaluate the 

correctness in the identification of cone-like landforms, 

we tested an unnamed field of pitted cones located to 

the east of the Noctis Fossae volcanic field. To design 

our algorithm, we applied four CNN architectures for 

image segmentation including U-Net [18], fully convo-

lutional network (FCN) [19], pyramid scene parsing 

network (PSPNet) [20], and SegNet [21]. We com-

pared the segmentation performance of these architec-

tures using several configurations for each of them with 

various network depths and by applying two types of 

network backbone, Visual Geometry Group (VGG) 

and ResNet. These four architectures show near-

constant segmentation results with the highest values of 

validation intersection over union (IOU) parameter for 

U-Net (0.70) and U-Net with VGG backbone (0.72). 

The U-Net VGG was used in our final code. To create 

training data, the original image size (11812x11812 

pixels; 1500 dpi) is reduced 10 times and then divided 

into 480x480 px chunks (25% of the Mars surface 

overlap for two neighboring pieces). At first, each 

training image was manually annotated to mark the 

location of pitted cones, impact craters, and back-

ground with three different colors (Fig. 1B) to create a 

training target for the semantic segmentation task. Due 

to the limited number of training samples, heavy data 

augmentation was used to prevent overfitting and in-

crease robustness to noise. During this segmentation, 

the algorithm identifies the three aforementioned mor-

phological classes. Then the segmented image is fil-

tered to remove artifacts and noise. Finally, the con-

nected component labeling algorithms is performed to 

extract solid regions and determine their location and 

size. In addition, at this stage, we have used a filter that 

removes small objects (<5 pixels in perimeter) from 

further consideration. After the segmentation and de-

tection process, the code generates a summary table 

with the location and parameters of the identified ob-

jects.  

Results and Conclusions: To evaluate our algo-

rithm, we used two testing images on the scale of 

1:500,000. Before the segmentation, we did not con-

duct any manual mapping. The algorithm has detected 

8 potential cones and 71 impact craters. In no case, the 

algorithm has misidentified the cone and impact crater. 

After the code implementation, we have conducted a 

detailed manual mapping using the same scale. We 

have confirmed the cones' origin for all of the mapped 

structures and identified one additional cone that has 

not been recognized by the algorithm. Considering 

impact craters the algorithm did not detect 17 of them, 

whereas 2 were false detections. Therefore, the success 

rate for pitted cones and impact craters are ~90% (7/8) 

and ~80% (71/90), respectively. The designed algo-

rithm efficiently detects most pitted cones and impact 

craters on the Mars surface. This significantly increases 

our chances in searching for hydrothermal activity and 

related ore deposits, which will be crucial in future 

Mars exploration by humans. 
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