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Introduction: The existence of volatiles, especially
hydrogen (or presumably H»>O ice), in the lunar polar
regions has been supported by observations of LCROSS
impact plumes [1] and other spacecraft remote sensing
like neutron spectrometry [2-3], although negative re-
ports also exist [4]. Interest in this topic has motivated a
growing number of future scientific and technological
lunar polar missions around polar craters, which host
permanently shadowed regions [5—8]. In many polar
missions, landing-site candidates are directly visible
from the Earth, nearby the permanently shadowed re-
gions, in sunlit areas, and on gentle slopes [8—12]. Be-
sides, for the landing and exploration site selection, the
spatial distributions and densities of craters and boul-
ders are indispensable. For example, the spatial infor-
mation of craters and boulders must be available on me-
ter-sized scales (10 m at least) to determine the landing
ellipses of rovers [13]. However, the number density
and size frequency of craters and boulders around those
candidate sites remains unknown.

This study provides size—frequency measurements
of the meter-sized craters and boulders around the South
pole Shackleton and the North pole Whipple. Based on
our counting results, we assess the risk of landing-site
candidates for future lunar polar exploration missions.
Because the sizes of the smallest craters and boulders
exceeds a few meters in our study, the sites should be
refined by examining the higher resolution images (i.e.,
tens of centimeters) like close-up images of the site be-
fore landing, and images which are currently taken by
Chandrayaan-2 [14].

Study regions and analyzed data: We chose a
900-km? square area containing the entire rim of the 21-
km-diameter Shackleton crater centered on 89.6°S,
139.5°E and a 400-km? square area containing the entire
rim of the 15-km-diameter Whipple crater centered on
89.2N°, 119.5°E (Figure 1). We manually counted the
craters and boulders in the mosaic images (~1 m/pix)
based on Lunar Reconnaissance Orbiter Camera/Nar-
row Angle Camera observation [15]. We used Digital
Elevation Model from Lunar Orbiter Laser Altimeter
[16] to analyze regional slope.

Results and Discussion: We identified 238,844 cra-
ters and 2,973 boulders around Shackleton crater, and
67,730 craters and 7,375 boulders around Whipple
crater, respectively. The counting results are shown in
Figures 2 and 3. The list of craters and boulders will be
available on a website.
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Figure 1. LROC/NAC mosaic images showing our
study areas. (a) and (b) show the 30 km % 30 km
square area containing Shackleton crater; (c) and (d)
show the 20 km X 20 km square area containing Whip-
ple crater. White circles in (b), (d) indicate the posi-
tions of the South and North pole. All images are taken
from a map assembled by Arizona State University,
downloaded from Moon Trek (Day and Law (2018) ).
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Figure 3. Number density maps of identified (a) small
craters and (b) boulders around Whipple crater.
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Figure 2. Number density maps of identified (a) small
craters and (b) boulders around Shackleton crater.
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Using the crater areal density calculated in this
study, we reassessed the candidate sites of future mis-
sions around Shackleton crater. For the site assessment,
we also referred to the distance from permanently shad-
owed regions (including small ones dotted around
Shackleton crater), areal slope steepness, and illumina-
tion conditions (Figure 4). We subdivided the study re-
gions into 2 kmx2 km units as shown in Figure 4 (a),
evaluating the merits of each site. Finally we identified
“A” in Figure 4 as a common point of low-crater density
region (50 km? for craters >10 m in diameter), mild-
slope region (<15 degree in average), persistently illu-
minated region (>50 % in one lunar year), and neighbor
(< 5 km) of permanently shadowed region.

We focused on the region around “A”. Figure 5 (a)
shows the permanently shadowed regions [11] and the
regions estimated to be bearing ice exposures [17]. Fig-
ure 5 (b) shows identified crater maps in “A”, empha-
sizing a fresh crater which is densely populated with
boulders.
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Figure 4. (a) A map showing analyzed subdivisions (2
km x 2 km square areas, separated by green lines). Red
areas show permanently shadowed regions [11]. (b)
Correlations between the average slope and the crater
number density (>10 m in diameter) in each 2 km x 2
km unit in the Shackleton area. The grayscale color
contour indicate the amounts of solar irradiation in
each unit, estimated from illumination maps [11].

Permanently shadowed region (Mazarico et al. 2011)

@ Ice exposures (Li e al. 2018)
Figure 5. (a) A map around region “A”, showing per-
manently shadowed regions [11] and ice exposures
[17]. (b) Crater maps in region “A”. Red circle shows a
crater with high boulder density (~1000 km).
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In addition to the permanently shadowed regions,
low-temperature subsurface area in sunlit regions is
considered to be another prospective place for the water
concentration [18—19]. As shown in Figure 6 (a), crater
ejecta maps can be produced from the crater location
map (i.e., Figure 5 (b)) using the empirical model of the
ejecta thickness [20]. The crater ejecta map will be help-
ful to future regolith drilling and icy measurements [8].
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Figure 6. (a) Crater ejecta map produced from crater
size and location map (Figure 5 (b)), using empirical
model of the ejecta thickness [20]. (b) Vertical ejecta
thickness model in region “X”, shown in (a).
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