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Introduction: Laser-induced breakdown 

spectroscopy (LIBS) is an effective resource used to 

determine the geochemical composition of remote sites, 

as evidenced by the success of the ChemCam and 

SuperCam instruments onboard the MSL Curiosity 

[1,2,3] and Perseverance rovers [4,5,6,7], respectively. 

Because LIBS instruments can be operated remotely, 

this technique shows great potential for predicting the 

geochemistry of unknown targets on remote planetary 

bodies. 

A key question for LIBS calibration efforts is how 

to optimize the selection of calibration standards used to 

predict the composition of an unknown target surface. 

Previous work has employed the use of “submodels”, in 

which a preliminary prediction of major element 

composition was used to group test spectra into low, 

mid and high concentration ranges [8]. Predictions were 

generated using models trained on spectra with 

matching concentrations. 

In this study, we evaluate the effectiveness of 

various types of submodels by making direct 

comparisons among prediction accuracies calculated 

using spectra classified by SiO2 content only, by 

compositions of each major element, and by Si II/I ratios 

(a proxy for plasma temperature [9]). Our goal is to 

assess the merit of customizing LIBS calibration 

datasets to “match” the unknown targets by various 

means and establishes the best criteria to consider when 

choosing calibration spectra to optimize prediction 

accuracy. 

Methods:  Spectra were collected with the 

ChemLIBS instrument at the Mineral Spectroscopy 

Laboratory at Mount Holyoke College (MHC). The 

calibration suite at MHC includes 2990 rock powder 

standards collected from several sources with support 

from the NASA Mars Fundamental Research program 

[10]. Spectral preprocessing included dark subtraction, 

smoothing, wavelength alignment to a titanium 

standard, and correction for instrument response. 

Additional processing included normalization to the 

total intensity of each spectrometer range (UV, VIS, and 

VNIR) and application of a fully-automated baseline 

correction [11]. 

Partial-least square (PLS) models were generated 

and run on the Data Exploration, Visualization, and 

Analysis for Spectroscopy (DEVAS) website hosted by 

MHC (nemo.mtholyoke.edu). The entire calibration 

database was divided into training and test sets 

containing approximately 75% and 25% of all available 

spectra, respectively. Spectra used for submodels were 

selected from within these training and test sets. 

SiO2 concentration-based submodels.  Training set 

spectra were sorted by known SiO2 concentration and 

separated into five ranges (Figure 1). Each submodel 

contained spectra collected from nearly 440 unique 

calibration standards. All training set spectra were used 

to generate preliminary SiO2 predictions (full-range) for 

all test spectra. Predicted SiO2 concentrations calculated 

using the full-range model were used to sort test spectra 

into the same five SiO2-based ranges as training set 

spectra, each containing a similar number of reference 

targets (≈100-175). Submodels generated using training 

spectra sorted by known SiO2 concentrations were then 

used to make predictions for all major elements on test 

spectra in matching (predicted) SiO2 ranges. 

Si II/I ratio-based submodels.  Training and test set 

spectra were grouped by the ratio of the Si II emission 

line at 634.7 nm to the Si I line at 288.2 nm. Due to 

suspected inconsistencies in laser power as well as 

matrix effects from the complex plasmas arising from 

our geochemically diverse standards, these spectra 

represent a wide range of Si II/I ratios. Training set 

spectra were separated by Si II/I into five ranges with 

equal numbers of calibration spectra (≈440). Models 

were used to predict major element compositions in the 

test spectra contained within each comparable Si II/I 

range. 

Blended submodels.  The complete training suite 

was used to calculate preliminary compositions for 

every major element. Test spectra were sorted by 

predicted composition of each major element and 

submodels with overlapping concentration ranges were 

used to produce a final prediction [8] (Figure 1). When 

initial predictions fell into an overlapping range 

between two submodels, a blended submodel was 

 
Figure 1. Predicted vs. measured SiO2 concentrations 

calculated using submodels and the full calibration 

database. 

1296.pdf53rd Lunar and Planetary Science Conference (2022)



created using the weighted average of predictions from 

both submodels. 

Prediction accuracies are reported as the root mean 

squared error of prediction (RMSE-P). Full model 

predictions employ the entire training and test sets 

(~2250 and ~750 calibration targets, respectively) for 

calibrations. In contrast, the total RMSE-P refers to a 

compilation of predicted and true compositions for all 

ranges  within a submodel. This is similar to an average 

RMSE-P, but is appropriately weighted according to the 

number of calibration standards contained within each 

range. 

Conclusions: A comparison among all submodels 

and full models indicates that separating spectra based 

on geochemical composition or plasma temperature 

conditions can improve the accuracy of calibrations 

used to quantify the major element concentrations in 

unknown targets, but only under certain conditions. 

Advantages to using submodels are particularly evident 

within individual concentrations ranges, such as using 

high-SiO2 standards to predict MgO and CaO 

compositions, or low-concentration MgO and CaO 

standards predicted using blended submodels (Figure 

2). However, highly unreliable predictions can be 

generated using submodels, especially at extreme 

concentration ranges where few calibration standards 

are available for training and test sets. This is 

particularly evident in high-concentration Fe2O3, MgO, 

and CaO blended submodels. 

Prediction accuracies for submodels are influenced 

by the size of the calibration suite, in addition to the 

ability of the training spectra to match the test spectra 

[12]. Because the ranges of the blended submodels are 

fixed according to concentration, the number of 

reference targets varies among elements’ submodels in 

a way that reflects their composition distributions. This 

potentially complicates a direct comparison among 

submodel types. 

A high degree of variability is observed among 

submodel ranges (Figure 2); however, the total RMSE-

P can be used to gauge the overall accuracy of a 

submodel. No substantial differences in RMSE-P were 

found among total submodel and full model predictions 

(Figure 3). In fact, the full models presented here 

produced more accurate results than submodels for 

SiO2, Fe2O3, MnO, CaO, K2O, and P2O5. The 

implication is that unless the original dataset is large 

enough to support division into multiple submodels, the 

most accurate predictions are often generated by 

utilizing the greatest number of calibration standards 

available. Improved prediction accuracies of remote 

targets can be achieved through utilization of a large, 

geochemically diverse calibration database. 
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Figure 2. RMSE-Ps for each submodel method. 

 
Figure 3. (top) Total RMSE-Ps for each submodel method used 

in this study. 
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