
DEEP LEARNING PROVIDES A PROMISING APPROACH TO DENOISING MARS RADAR DATA.
C. C. Amos1, M. R. Perry1, and N. E. Putzig1, 1Planetary Science Institute (camos@psi.edu).

Introduction: Electromagnetic interference (EMI)
is one of several factors that contribute noise to radar
sounding data collected by the Shallow Radar
(SHARAD) sounder aboard the Mars Reconnaissance
Orbiter, and EMI is currently addressed via automated
notch filtering [1]. Various deep learning (DL)
methods have been successfully applied to a wide
range of denoising problems including speech
recognition [2], electrocardiograms [3], and
gravitational wave detection [4]. In this work we use
the Pix2Pix conditional generative adversarial network
(GAN) DL architecture as described by Isola et al. [5]
to translate noisy radar spectrograms into noise-free
spectrograms. This effort provides the first steps in
determining if DL denoising techniques could provide
improved EMI noise reduction as compared to notch
filtering for SHARAD data processing, allowing more
accurate interpretation of Mars’ subsurface properties.

Methods: The project workflow is: 1) add
arbitrary synthetic noise to a set of fully processed
SHARAD radar frames, 2) create spectrograms of the
original and noisy radar frames, 3) train a DL model to
translate a noisy spectrogram to a noise-free
spectrogram, and 4) convert the denoised spectrogram
back to a time-domain radar frame. Data for this study
consist of >30,000 radar frames taken from a ~250 km
x 250 km area over the north polar layered deposits
(NPLD) on Mars. This area contains a vertical
sequence of subsurface reflectors [6] enabled by low
radar attenuation in ice, which allows us to evaluate
denoising methods over greater depths than in
dominantly ice-free areas.

As this work represents a proof-of-concept study,
we chose arbitrary synthetic noise parameters rather
than performing a time-intensive detailed noise
analysis of SHARAD data to inform the model training
dataset. We added two synthetic random noise bands to
radar frames at 3.00-3.01 MHz and 6.0-6.1 MHz,
allowing slight amplitude and phase variation between
individual radar frames. After adding the synthetic
noise, we took the absolute values of short-term fourier
transforms (STFT)[7] to produce magnitude
spectrograms of both the original and noisy signals.
We chose these frequency-domain representations of
the signals under the assumption that band-limited
noise will be easier for a DL model to characterize in
the frequency domain than in the time domain. Our
choice of magnitude spectrograms as DL model inputs
avoids the introduction of complex numbers by STFT
and allows the use of well-established DL network

architectures such as Pix2Pix. Figure 1 presents an
example of these magnitude spectrograms.

Once the dataset was prepared, we used 30,000
original and noisy spectrogram pairs to train a DL
model, withholding an additional set of 1000 data pairs
from training for blind validation. After 500 epochs
(the number of times the model processes the entire
dataset) of model training, we evaluated model results
every 50 epochs by predicting denoised spectrograms
from the blind dataset and comparing to the original
noise-free data. Our evaluation consisted of computing
both the mean squared error (MSE) and the cosine
similarity between the time-domain signals created
from the magnitude spectrograms (method described
below), and we stopped training at 1000 epochs when
these metrics plateaued, which indicates that no further
accuracy improvement was being achieved by the DL
model.

To create a time domain signal from a magnitude
spectrogram, the phase of the signal must be estimated.
Here we use a variant of the Griffin-Lim Algorithm
(GLA)[8] commonly used in speech and audio
recognition workflows to estimate the phase of the
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denoised model spectrograms and create time-domain
denoised radar frames. As a modification, we used the
phase information from the noisy signal as initial input
to the iterative GLA rather than the typical method of
using a random phase as initial input. This
modification significantly improved the accuracy and
stability of the GLA output signals.

As a first analysis step, we compared the blind
GAN-denoised radar frames to those produced from a
notch-filtering approach designed to remove the
synthetic noise bands described earlier (Figure 2). The
performances in reconstructing the noise-free signal of
the GAN and notch filtering approaches are quite
similar based on the evaluation metrics. To improve
results of the DL approach, we developed a selective
GAN (sGAN) workflow. In this approach, we first
compute fast fourier transforms of the input noisy
signal and the output GAN-denoised signal. For the
resulting two spectra, we set a threshold amplitude
difference to identify noisy frequencies. We then
combine the two spectra by selecting the output
GAN-denoised spectrum only for the noisy
frequencies, with the remainder of the spectrum taken
from the input signal. Finally, we take the inverse fast
fourier transform of the combined spectrum to obtain
the sGAN time domain denoised radar frame.

Discussion: As demonstrated in Figure 2, the
sGAN workflow described here almost perfectly
reconstructs a noise-free time-domain signal within the
parameters of this proof-of-concept study. The
modified GLA method produces accurate phase
estimations from magnitude spectrograms, enabling
the use of well-established DL networks by avoiding
the use of complex numbers. Selectively choosing
GAN denoised data in the frequency domain reduces
the pressure for a DL network to accurately predict
every frequency at every time step in the denoised
signal, yielding sGAN-denoised radar frames with
lower MSE compared to notch filtering.

Future work should include a detailed evaluation of
EMI noise within SHARAD data. While this study
presents promising results by removing relatively
stationary arbitrary synthetic noise from radar frames,
a more realistic model training dataset would allow the
sGAN approach to be compared against the automated
notch filtering approach [1], which is designed to
identify and remove variable noisy frequencies and is
the current standard for SHARAD data products
available in NASA’s Planetary Data System.
Additional DL model architectures should also be
tested for improved performance or robustness, such as
complex-valued networks which would avoid the
phase estimation step presented in this study. Lastly,
we note that the sGAN approach may have

applications beyond EMI noise removal and that it
may be applied to any definable band-limited noise
which could be modelled into a robust training dataset.
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