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Fig. 1. (a) Data-model comparison for 
simplified snowmelt model / GCM 
output that best matches ~3.6 Ga data 
(pCO2 = 150 mbar, τ = 3.1, 45° 
obliquity, fsnow = 43%). Dark blue band: 
area of predicted snowmelt runoff. 
Green symbols: true positives. Red 
symbols: false negatives. Thick black 
line: border of masked-out region 
(postfluvial resurfacing), which differs 
between the two eras. Elevation 
contour spacing: 3 km. Orange line: 
273 K isotherm in annual-average 
temperature. (Youden’s J, 0.30; ROC 
AUC for varying fsnow for this GCM 
run, 0.68). (b) As (a), but for the output 
that best matches 3.5-3.0 Ga data 
(pCO2 = 150 mbar, τ = 2.46, 
45° obliquity, fsnow = 56%). (Youden’s J, 
0.34; ROC AUC for this GCM, 0.65). 
LN/EH = Late Noachian/ Early 
Hesperian, LH/A = Late Hesperian/ 
Amazonian. 
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     The Problem: Mars’ wet era shows a shifting 
geographic distribution of rivers over time [1], however 
these shifts have not previously been compared to 
quantitative climate models to track changes in Mars’ 
atmospheric greenhouse effect over time.  
     Our Approach: We used a grid of 54 GCM 
simulations [2,3] at Early Mars solar luminosity, varying 
atmospheric pressure (pCO2), obliquity, and the strength 
of non-CO2 greenhouse forcing, which was represented 
as a gray gas (column optical depth τ) [4,5]. The 
temperature and potential-sublimation-rate output from 
the GCM was used to drive a simplified meltwater 
model, assuming that meltwater runoff occurred where 
the average temperature exceeded 273 K for a 
continuous period of 100 sols and snow was relatively 
stable (we represented the percentage of the planet’s 
surface area with warm-season snow by a free 
parameter, fsnow) [6].  
     New Results: Our resurfacing-corrected analysis of 
existing databases of (a) >3.6 Ga valley networks [7], 
compared to (b) <3.6 Ga alluvial fan (and delta) 
topographic catchments [8], confirms, for the first time, 
a down-shift of ~5 km in the preferred elevation of 
water-worn features between ~3.6 Ga and ~3.0 Ga. 
(This corresponds to the wettest climates during the two 

time intervals shown; it is possible that Early Mars was 
globally dry in most years). When these data are 
compared on an 8-pixels-per-degree grid to down-
sampled MarsWRF GCM output (Fig. 1), the best fits 
(Fig. 2) are remarkably weakly dependent on pCO2, but 
require a decline in the overall greenhouse effect by 
≳10K. We did not find evidence for changes over time 
in fsnow, which was poorly constrained (best fits ~50%). 
(Best-fit combinations of {pCO2 , τ} are the same 
whether we marginalize over fsnow  or just consider the 
best fit). We did not expect our results to be so weakly 
dependent on pCO2 [9,10]. Idealized GCM simulations 
led by B. Fan [11] show that the lapse rate in surface 
temperature is controlled by greenhouse-effect strength, 
not pCO2, consistent with these results.  
     Discussion: Our approach is relatively 
computationally inexpensive, but has the restriction of 
assuming a snow/ice water source for rivers – we do not 
explicitly simulate rainfall [12-13]. It would be 
interesting to compare ‘desert rain’ predictions [14] to 
data. We do not think that the loss of Mars H2O to space 
[15] is solely responsible for the decline in the elevation 
of rivers, because (e.g.) relatively young alluvial fans 
formed at locally high elevations in the S Highlands, 
inconsistent with a groundwater source. However, 
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integrating the subsurface hydrology with the 
surface/atmospheric hydrology of Early Mars at global 
scale remains an attractive target [16].  
     Conclusion: Within the framework of our model, 
river-forming climates on Early Mars were warm and 
wet first, and cold and wet later. This ≳10 K shift was 
mainly driven by waning non-CO2 radiative forcing.     
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Fig. 2. (a) Global annual average temperature (K) as a function of pCO2 and of gray gas column optical depth, τ. 
Asterisks correspond to inputs to individual GCMs. Obliquity = 45°. (b) Goodness of fit of model to data as a 
function of pCO2 and of gray gas column optical depth, τ. Blue shaded region corresponds to relatively good fit to 
>3.6 Ga data, and orange shaded region corresponds to relatively good fit to <3.6 Ga data. The blue diamond is 
the best-fitting GCM run for >3.6 Ga data (Fig. 1a), and the orange diamond is the best-fitting GCM run for <3.6 
Ga data (Fig. 1b). Contours correspond to 0.5, 0.55, 0.6, and 0.65 ROC AUC (thicker lines correspond to better fit).  
 

 
Fig. 3. Graphical summary of the underlying concept: Why did Mars dry out? (a) Left column shows a simple 
(geographically idealized) schematic of changes over time, interpreted by analysis of elevation decline in 
comparison to the ensemble of GCM simulations. Right column: Illustrating that within the framework of our model, 
shifts can occur with or without changes in pCO2, but very probably require a decline in non-CO2 radiative forcing.  
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