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NITROGEN SYSTEMATICS DURING HYDROTHERMAL SYNTHESIS OF INSOLUBLE ORGANIC
MATTER: SPECIATION AND PH EFFECTS. D. L. Foustoukos, G. D. Cody and C. M. O’D. Alexander, Earth
& Planets Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA. (dfoustoukos@ciw.edu).

Introduction: Despite the abundant presence of N
in the insoluble organic matter (IOM) isolated from
carbonaceous chondrites [1], very little is known about
the change in N isotope systematics and speciation
during IOM hydrothermal alteration [2, 3]. Previous
experimental studies that there is loss of labile N-
functional groups during hydrothermal alteration, and a
minimal degree of chemical and isotope exchange of N
between IOM and the aqueous solutions [4-6]. All the
previous studies have been conducted at near-neutral
fluid pH conditions. However, alkaline pH conditions
have been suggested to promote the synthesis of N-
functional groups during aldehyde condensation in N-
bearing solutions [7] and to enhance the stability of C-
O functional groups during glucose carbonization [8].
Here, we present experimental data to address the ef-
fect of pH on the N systematics during hydrothermal
synthesis of IOM-analog (syn-IOM) material.

Experimental methods: Hydrothermal experi-
ments of syn-IOM synthesis were performed (150 -
200 °C) to determine the degree of N incorporation in
the structure of the organic residue as a function of the
fluid pH. The syn-IOM was synthesized by dextrose
carbonization under vapor saturation pressures [4].
Reaction times varied from 0.5 to 260 hours. The reac-
tant H,O solutions were enriched with: (i) NH4Cl
(0.21-2.8 M) at neutral pH, (ii) NH4Cl (0.5 M) at acid-
ic conditions (0.08 M HCI); (iii) NH4CI (0.17-1.93 M)
at alkaline conditions (1IN NaOH), and (iv) NaCN (0.1
— 0.5 M) solutions that rendered alkaline pH condi-
tions. The starting H/C ratio was ~ 2.07 (dextrose),
while the N/Cy atomic ratios varied from 0.02 to 0.577.

The H-C-N elemental and isotopic analyses were
performed with Thermo Scientific Delta VP and XL*
mass spectrometers by following procedures of [4].

Results and Discussion: Results show that the H/C
atomic ratios ranged from ~ 0.85 to 1.4 with a median
value of 1.06 (£0.15). At 200 °C, the median H/C ratio
was attained within 3 h. However, for a similar H/C
evolution at 150 °C longer reaction times were re-
quired (Fig. 1). Overall, the extent of H/C variability
between the residues was much smaller than the varia-
bility of the N/C atomic ratios.

The extent of N incorporation into the syn-IOM
depends on the concentration and speciation of N dis-
solved in the coexisting aqueous solutions (Fig. 2). The
attained N/C atomic ratios of the syn-IOM were
strongly dependent on the N/C atomic ratios of the
starting aqueous solution (N/C)o. Approximately 15-

30% of the initial N composition was incorporated in
the IOM structure. Surprisingly, temperature did not
affect the extent of N update, which, appears to be
governed by the speciation of N in the aqueous solu-
tions.
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Figure 1. H/C atomic ratios as function of the reaction time.

N systematics: The experiments revealed that in-
corporation of N into the syn-IOM structure appears to
be strongly dependent on the abundance of N-H-
bearing aqueous species in solution, but with minimal
influence from temperature (Fig. 2). This process like-
ly involves retro-aldol or aldehyde condensation reac-
tions during sugar decarbonylation or formaldehyde
condensation [7, 9, 10]. Ammonia has been shown to
enhance the yields and the kinetics of synthesis of syn-
IOM formed by formaldehyde condensation [11, 12].
Similar results are reported for hydrothermal decar-
bonylation of sugars [13].

In our study, higher yields of N incorporation were
obtained at the elevated pH conditions attained in the
NaCN and NaOH-bearing experiments. Under alkaline
conditions, the attained N/C atomic ratios were nearly
an order of magnitude higher than those measured dur-
ing synthesis at near-neutral pH conditions. Strong
acid conditions inhibited N incorporation. suggesting
that pH conditions affect IOM synthesis either by pro-
moting the stability of NHsqq relative to NH4" or by
enhancing the formation of N-enriched compounds
such as pyrazines and pyridines during sugar decar-
bonylation [9].

Thus, we hypothesize that the observed pH effect
may be associated with either the molecular structure
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of the residues (Fig. 3) or the relative abundance of
NH3aq and NH4" in solution. Alkaline pH has also
been inferred as the optimum condition for alkylpyri-
dines synthesis by aldehyde condensation in the pres-
ence of NH3ag at 60 °C [7]. Redox conditions have
also been hypothesized to play a key role in the distri-
bution of alkylpyridines (oxidizing) and alkypiperi-
dines (reducing) in organic matter synthesized by alde-
hyde condensation in the presence of NHsug) [14]. In
our study, redox conditions were not buffered, but
aqueous speciation modeling precludes the presence of
oxidized N species (e.g., NOs3") in solution.

Experiments with "N-bearing KCN and NH4Cl
aqueous alkaline solutions are in progress to determine
the N speciation in the structure of syn-IOM.
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Figure 2. N systematics during synthesis of syn-IOM.
N/Cy corresponds to the composition of the starting mix-
ture of aqueous solution and dextrose.

Molecular Structure: The molecular structure of
the C-functional groups depicted by '3C SSNMR anal-
ysis also differs between the residues synthesized un-
der near-neutral and alkaline conditions (Fig. 3). Under
alkaline pH (i.e., NaCN-bearing experiments) residues
are significantly enriched in CH,-O relative to the resi-
dues developed at more acidic conditions (i.e., NH4Cl-
bearing experiments). The carboxylic (R-COOH) and
the methyl (R-CHs) functional groups also attained
higher abundances. By contrast, the furan fraction of
the aromatic C is strongly depleted under alkaline pH.
A similar pattern is observed for the carboxyl C
(C=0). It appears, therefore, that the stability of the O-
bearing aliphatic C has been enhanced at the expense
of the O-bearing aromatic functional groups. These
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Figure 3. 3C SSNMR spectra of residues synthesized at 150
°C. The NH4Cl-bearing and NaCN-bearing experiments were
conducted at near-neutral and alkaline pH, respectively.

results are in agreement with hydrothermal glucose
carbonization experiments performed at 180 °C in the
presence of urotropine-bearing alkaline aqueous solu-
tions [8].

The apparent stability of the C-O functional groups
in the syn-IOM structures developed under hydrother-
mal alkaline conditions is expected to have important
implications for understanding the extent and kinetics
of H and O isotope exchange mechanisms during hy-
drothermal synthesis and alteration of chondritic [OM.
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