
HOW WE'LL KNOW WE CAN READ ALL THE DATA IN THE PDS: A TESTING METHODOLOGY
FOR THE PLANETARY DATA READER!!! S. V. Kaufman1, C. C. Million2, M. A. St. Clair2, 1Million Concepts
(sierra@millionconcepts.com) 2Million Concepts

Introduction: The Planetary Data Reader (pdr) is
an open-source Python application and library for
reading planetary scientific data, particularly data
archived in the Planetary Data System (PDS). We
intend pdr to read all data products held by the PDS
that comply with either version 3 or 4 of the PDS Data
Standards (PDS3 or PDS4). Here we describe the
current state of pdr, concentrating specifically on the
methodology we’ve developed for determining dataset
compatibility with our toolkit.

Installation. pdr is easy to install. We recommend
the use of a conda environment. Regularly-updated
installation instructions can be found here [1].

Workflow. pdr has a simple workflow that is
immediately accessible to any user with basic
knowledge of Python. You simply import pdr and
call the function pdr.read(fn), where fn is a data
or label file of your choice; pdr returns all of the
product’s data and metadata in a Python object.

Figure 1. Example workflow for pdr with a CRISM
image [2] showcasing the .show convenience method,
which allows users to easily view imaging data.

User Feedback and Data Requests. While pdr will
be able to read all of the data in the PDS by the end of
our primary development cycle (anticipated Q3 2024),
we want this toolkit to be useful for the community
well before then. We are prioritizing support for
datasets based on our assessment of community need.
If there’s a data set you’d like us to prioritize support
for, please make a request here [3]. If you have bug
reports or other types of feature requests, please open a
GitHub issue [4].

Cataloging the PDS: In order to scope and
organize our compatibility testing process, we needed a
lot of information about PDS holdings – data volume,
file formats, numbers of files, volume structure, etc.
There is no central catalog of the contents of the PDS
that provides this information. We wrote bespoke
multithreaded software to individually spider each
PDS node and auxiliary mission node.

First, our spiders recursively navigated node
directory link structures and recorded all URLs they
encountered that appeared to point to data or metadata
files. They also recorded all the directories they
encountered, including any they attempted to traverse
but failed. (In several cases, this led to the discovery of
corrupted directories, which we brought to the
attention of their housing nodes, who repaired them.)

Second, we used these URL lists to query file sizes
by requesting the HTTP header (metadata) of each
URL on the list created in the first step. For files
whose headers did not include sizes, we parsed size
information from the text of the parent web page.
Concatenating these results gave us a database of
names, URLs, and sizes for all discoverable files.

This database is a snapshot of the PDS at the time
of spidering and will require periodic updates due to
the release of new data (e.g., the Perseverance
mission’s first data release postdated our spidering
effort). However, since individual missions are
expected to have consistent file formatting standards,
and all new missions will be subject to the PDS4 data
standards [6] (which are strict compared to PDS3 [7]),
keeping a continuously-updated list of files from
ongoing missions is not critical.

Selecting Testing Subsets: Verifying pdr-produced
outputs for every single file in the PDS would be an
impossibly large task. Fortunately, most planetary data
sets are reasonably well-organized and homogenous,
so we can instead select a representative sampling of
each “product type” in the PDS. By “product type,” we
mean a grouping of files that are similar to one another
in both a science-domain sense and a data format
sense; or, more pragmatically, files that, if pdr is able
to open one, our expectation that pdr can open all the
others greatly increases. (We are not attempting to
produce a complete taxonomy of planetary data.)
Factors influencing our identification of product type
include (examples in parentheses): file formats (FITS,
CSV), file structures (fields, dimensionality, data
types), data structure categories (array/image, table),
metadata structure (label fields, namespaces), level of

1119.pdf53rd Lunar and Planetary Science Conference (2022)

https://docs.google.com/forms/d/1JHyMDzC9LlXY4MOMcHqV5fbseSB096_PsLshAMqMWBw/edit
https://github.com/MillionConcepts/pdr/issues
https://github.com/MillionConcepts/pdr/issues


reduction (L0, RDR), explicit identification as a type
by data providers, provenance (mission, instrument,
software pipeline, producing institution), position in
physical archive structure, target (the Moon, sky), and
observational intent (calibration, science).

Practically speaking, we generally start by
consulting a data set’s software interface specification
(SIS) or other primary documentation to see how the
data providers categorized their products. We then
supplement and subdivide this categorization (if
necessary) by manually inspecting the archive
structure and data. For example, the LROC SIS [5]
refers to LROC NAC CDR files as a distinct kind of
product. However, they come in two varieties: scaled
I/F and radiance. We expect that these may work
differently in pdr because their units and data types are
different, so we treat them as two distinct product types
in order to more easily find glitches and analyze
unexpected outputs.

We then download one or two examples of each
product type, manually open them using pdr, and
record any modifications necessary to make pdr
correctly read them. We then incorporate these
modifications (if any) into pdr. At this point, we
consider the data set “notionally supported.”

Testing a Dataset: We then create a set of “rules”
to identify download URLs for each of these product
types – these might include a specific folder in the
download link or a naming convention in the filename.
We use these “rules” to filter our database of PDS files
and create a list of all files of this product type. We
then randomly select and download 200 of these files –
or all the files, if there are fewer than 200 (for instance,
LROC RDR products with larger swath coverage).

We open these files with pdr and hash their outputs
using the MD5 algorithm. We also create browse
versions of all data and metadata objects associated
with the product, generally including at least an image
or table and a parsed label text file, and possibly
including many files. If there are one or more images,
we produce unscaled and scaled versions of each
image; we perform scaling based on scale and offset
values specified in the label, common implicit special
constant values, and special constant values specified
in the label.

We manually inspect these browse products
(comparing them, when possible, to other existing
representations of the data) to ensure pdr read the
product correctly. If there are unexpected outputs, we
determine the source of the discrepancy, debug or
modify it, and re-test the product set until the output is
correct.

Once we are satisfied that pdr can read all files in
the set correctly, we pare the set down to one or two

files for each product type, which we then collate into
a small list of “representative” files for the instrument
or data set. We add this to a permanent test corpus for
regression-testing modifications to pdr. After
incorporation into the permanent test corpus, we
consider a dataset “officially supported”. A growing
list of these data sets can be found at [8].

Regression Testing: Ongoing modifications to
pdr’s code will be necessary for various reasons:
adding new features, expanding compatibility
(including compatibility with data sets that do not yet
exist), code refactoring and “cleaning,” and ensuring
compatibility with new versions of software
dependencies. When we update pdr’s code, we use our
test suite to open our permanent test set, regenerate
hashes for all products, and compare hash sets to
ensure our code changes did not have unintentional
consequences for officially supported data sets.

Hash comparison is a strict metric and can fail for
reasons that do not affect the actual correctness of
pdr’s output (operating environment changes, changes
in software dependencies, etc.). We have already
encountered this situation and are well-prepared to
handle it; tools including versioned records of pdr and
testing environments that preserve older versions of
our dependencies can help us determine whether an
apparent failure is, in fact, benign.

Acknowledgments: The development of pdr is
supported by NASA grant No. 80NSSC21K0885. We
would like to thank the Planetary Data System (PDS)
for their continued cooperation with this project and
for letting us stress their servers to index and grab very
large amounts of data.

References:
[1] Installation instructions:

https://github.com/MillionConcepts/pdr#readme
[2] Murchie, S., MRO CRISM TRDR,

MRO-M-CRISM-3-RDR-TARGETED-V1.0, NASA
Planetary Data System, 2006.

[3] Dataset request form:
https://docs.google.com/forms/d/1JHyMDzC9LlXY4
MOMcHqV5fbseSB096_PsLshAMqMWBw/edit

[4] GitHub issues:
https://github.com/MillionConcepts/pdr/issues

[5] ASU. LROC EDR/CDR Data Product Software
Interface Specification Version 1.18 (June 2010)

[6] Planetary Data System. Planetary Data System
Standards Reference Version 1.17.0 (October 2021)

[7] Planetary Data System. Planetary Data System
Standards Reference Version 3.8 (February 2009)

[8] List of supported datasets:
https://github.com/MillionConcepts/pdr/blob/master/su
pported_datasets.md

1119.pdf53rd Lunar and Planetary Science Conference (2022)

https://github.com/MillionConcepts/pdr#readme
https://docs.google.com/forms/d/1JHyMDzC9LlXY4MOMcHqV5fbseSB096_PsLshAMqMWBw/edit
https://docs.google.com/forms/d/1JHyMDzC9LlXY4MOMcHqV5fbseSB096_PsLshAMqMWBw/edit
https://github.com/MillionConcepts/pdr/issues
https://github.com/MillionConcepts/pdr/blob/master/supported_datasets.md
https://github.com/MillionConcepts/pdr/blob/master/supported_datasets.md

