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Summary: This work derives possible statistical 

options of crater equilibrium by focusing on their 
cumulative size-frequency distribution (CSFD) slope 
powers. One of the findings is that the crater equilibrium 
CSFD slope power shallower than −2 can result from 
both shallow and steep crater production CSFD slopes 
if small craters can effectively erase large ones, mainly 
caused by topographic diffusion. 

Introduction: Terrestrial planets have been exposed 
to severe impact bombardments over their lifetimes so 
that their surfaces exhibit heavily cratered conditions. 
Some have experienced so many crater emplacements 
that existing craters are erased by new ones. This crater 
population evolution process (i.e., crater erasure and 
creation) has challenged constraining the impact 
histories because crater erasure has been considered to 
eliminate historical surface records. The question is 
whether the observed crater population still gives clues 
on crater production histories.  

Issues on crater equilibrium: The critical 
unresolved mechanism is crater equilibrium, in which 
the number of observed craters reaches a balance 
between generation and erasure and so apparently 
remains unchanged over time [1,2]. Crater equilibrium 
uniquely features the observed crater population. 
Consider two types of CSFDs: the produced crater 
CSFD, 𝐶! = 𝛷𝐷"#, where 𝐷 is the existing crater 
diameter, and 𝛷 and 𝜂 (−𝜂 is the slope power) are scalar 
parameters, and the crater equilibrium CSFD, 𝐶$|%&' =
𝛹𝐷"(, where 𝛹 and 𝜆 are scalar parameters. 𝐶! can 
include primary and secondary craters in a local area, 
which play a critical role in crater equilibrium [3,4]. For 
an ideal case, 𝜂 > 2 (i.e., a steep crater production 
CSFD) yields 𝜆 = 2, which has widely been reviewed. 
On the other hand, 𝜂 < 2 (i.e., a shallow crater 
production CSFD) leads to 𝜆 = 𝜂, which may contribute 
to the large crater population on the Moon [e.g., 5, 6] 

Substantial efforts have been made to detail crater 
equilibrium in many ways [e.g., 6-10]. Xiao and Werner 
[7] reported that the surface condition might be a 
significant contributor to crater equilibrium, meaning 
that crater equilibrium should have multiple patterns 
(particularly for smaller craters). Minton et al. [9] 
reported that the ideal 𝛽 = 2 case stems from a special 
condition that the degradation states (in the sense of 
diffusion processes) only depend on 𝐷), which uniquely 
makes these coefficients nondimensional. This finding 
is consistent with Hirabayashi et al. [10]. 

Despite the recent breakthroughs, there are still 
limited ways to quantitatively identify whether a target 
surface has reached crater equilibrium. One of the 

reasons is a lack of statistical understanding of this 
mechanism. This issue becomes significant when 
studies explore crater conditions on multiple terrestrial 
planets, as the crater production and degradation 
processes are significantly different. The purpose of this 
work is to formulate possible statistical conditions of the 
crater population evolution to quantify when and how 
crater equilibrium occurs.  

Mathematical formulations: Our approach applies 
the analytical framework developed by Hirabayashi 
[10], who formulated the interactions between newly 
emplaced craters and pre-existing craters. Consider that 
the crater equilibrium CSFD is given as 
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where 𝐴 is a surface area, 𝐶$ is the counted crater CSFD, 
𝐶! is the produced crater CSFD, 𝐷 is the existing crater 
diameter, and 𝐷5 is the emplaced crater diameter, which 
is bounded between  𝐷'+, and 𝐷'-.. The degradation 
parameter, 𝑘, defines a ratio of the actual erasure crater 
number to the crater erasure number for the ideal 
cookie-cutting case [10]. If 𝑘 ≥ 1, one crater 
emplacement can erase more efficiently than simple 
two-dimensional overlapping; otherwise, it can only 
partially degrade existing craters. We write this 
parameter as: 
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where 𝛼 and 𝛽 are both scalar parameters, and 𝛾1 and 𝛾) 
are the scaling powers to describe how 𝑘 changes with 
𝐷5 relative to 𝐷.  

Figure 1 shows a schematic of this parameter. When 
𝐷5 ≤ 𝐷, a newly emplaced crater is smaller than an 
existing crater with degradation, meaning that 𝑘 is 
relatively small (𝑘 ≤ 𝛼	𝐷/) and represents topographic 
diffusion by smaller crater emplacements. On the other 
hand, when 𝐷5 > 𝐷, a newly emplaced crater is larger, 
describing that this parameter is relatively large (𝑘 ≥
𝛼	𝐷/) and represents cookie-cutting and ejecta 
blanketing. The transition diameter between these two 
regimes, 𝐷5 = 𝐷, results from how a crater emplacement 
erases the three-dimensional topographic features of 
existing craters. Minton et al. [9] elegantly described 
this transition diameter by considering that the 
degradation state that an existing crater becomes 
invisible completely equals the degradation state that 
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one crater emplacement can degrade an existing crater. 
In this sense, it is necessary to consider how the crater 
is identified by crater counting (i.e., human or machine 
counting factors) [9]. However, we do not consider this 
issue in this study.  

Results: This report focuses on when the slope 
powers of the degradation parameter, 𝛾1 and 𝛾), are both 
positive. This means that larger crater emplacements, 
i.e., 𝐷5, are more capable of degrading smaller existing 
craters, i.e., 𝐷. The derivative of 𝐶$|%&' with respect to 
𝐷 is provided as 
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This equation is always negative to satisfy that 𝐶$|%&' 
is always positive. The derived equation above, 
however, encounters singularity issues at 𝜂 − 2 − 𝛾1 =
0 or 𝜂 − 2 − 𝛾) = 0. The present study does not 
consider these conditions as this issue came from the 
non-smooth transition defined for 𝑘. Integrating this 
equation with respect to 𝐷 yields 𝐶$|%&'. There are three 
terms that control the crater equilibrium power slopes, 
i.e., the terms within the large brackets on the right side. 
Depending on which term is dominant, 𝐶$|%&'’s slope 
power, 𝜆, changes: −2 − 𝛽 (first term), −𝜂 − 𝛽 + 𝛾1 
(second term), and −𝜂 − 𝛽 + 𝛾) (last term).  

Table 1 shows three cases that could appear 
depending on 𝛾1 and 𝛾). The 𝛾1 >	𝛾) case defines the 
𝑘 value being small at 𝐷5/𝐷 ≪ 1 (inefficient 
topographic diffusion) and remaining around 𝛼	𝐷/ at 
𝐷5/𝐷	 ≫ 1 (degradation dominated by cookie cutters). 
The 𝛾1 ≤	𝛾) cases define the 𝑘 value giving effective 
degradation to smaller and larger craters (by 
topographic diffusion for small craters and ejecta 
blanketing and others for large craters). The subcases 
with different sings of 𝜂 − 2 − 𝛾1 and 𝜂 − 2 − 𝛾) 
further find multiple slope power conditions.  

The slope powers, −𝜂 − 𝛽 + 𝛾1 and −𝜂 − 𝛽 + 𝛾), 
have thresholds of crater diameters. For the term with 
the −𝜂 − 𝛽 + 𝛾1 slope power, 𝐷'+, should not be 
infinitesimally small; in other words, 𝐷'+, is finite so 
that this term is bounded. Similarly, with the −𝜂 − 𝛽 +
𝛾) slope power, 𝐷'-. should not be infinitely large to 
limit the term. The consequence of setting such ill-
defined conditions leads to 𝐶$|%&' = 0. The major 
reason is that crater degradation for these cases is so 
strong that taking limits, 𝐷'+, → 0 or 𝐷'-. → ∞, wipes 
out all existing craters.  

Discussions: This study provides seven subcases 
under three cases. For example, the subcases under the 
𝛾1 >	𝛾) case has widely been considered in the 

literature (Figure 1a). The first subcase, 𝜂 − 2 − 𝛾1 < 0 
and 𝜂 − 2 − 𝛾) < 0, represents a shallower crater 
production. When ejecta blanketing is negligible, and 
cookie-cutter is a primary contributor to crater erasure, 
𝛾) ∼ 0, leading to 𝜂 < 2. Without considering the size 
dependence of the transition, i.e., 𝛽 = 0, the 
equilibrium slope power becomes −𝜂	(𝜆 = 𝜂). The 
second subcase is the most common. This case leads to 
𝜂 > 2, given 𝜂 − 2 − 𝛾) > 0. The resulting slope 
power is −2 − 𝛽; if there is no size dependence term, it 
becomes −2	(𝜆 = 2). In this case, how steep the 
production CSFD does not matter for the equilibrium 
CSFD slope. The last subcase may cause a steeper crater 
production CSFD to produce an equilibrium CSFD 
slope shallower than −2, which is −𝜂 − 𝛽 + 𝛾1.	
Because 𝜂 − 2 − 𝛾1 > 0, the crater production CSFD 
slope power should be steeper than −2 − 𝛾1. If 𝛽 = 0, 
𝛾1 > 0 leads to −𝜂 + 𝛾1 > −𝜂. This subcase results 
from relatively higher topographic diffusion 
degradation, inferring that it should be cautious to 
access shallow equilibrium CSFD slopes.  
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Figure 1. Degradation parameter, 𝑘, as a function of 
𝐷5/𝐷. Each case shows how 𝑘 behaves at given 𝐷5/𝐷. 
 
Table 1. 𝐶$|%&'’s slope power given 𝛾1 and 𝛾), which 
are both positive. 𝛾 for 𝛾1 = 𝛾) means 𝛾 = 𝛾1 = 𝛾).  
𝜸𝟏& 𝜸𝟐  𝜼 − 𝟐 − 𝜸𝟏 𝜼 − 𝟐 − 𝜸𝟐 Slope power, -𝝀 

𝜸𝟏 > 𝜸𝟐 
< 0 < 0 −𝜂 − 𝛽 + 𝛾# 
< 0 > 0 −2 − 𝛽 
> 0 > 0 −𝜂 − 𝛽 + 𝛾$ 

𝜸𝟏 = 𝜸𝟐 [−] [−] −𝜂 − 𝛽 + 𝛾 

𝜸𝟏 < 𝜸𝟐 

> 0 > 0 −𝜂 − 𝛽 + 𝛾$ 
< 0 < 0 −𝜂 − 𝛽 + 𝛾# 
> 0 < 0 > −𝜂 − 𝛽 + 𝛾$ 

< −𝜂 − 𝛽 + 𝛾# 
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