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Introduction: Based on the spectral characteristics 

captured by the orbital spectral sensors, hydrous miner-

als, such as smectites, kaolinite, sulfates, carbonates, ze-

olites, opaline silica, chlorites, serpentine, prehnite and 

epidote have been identified on the surface of Mars (e.g. 

[1,2]). [1] identified the Na-zeolite analcime in the Nili 

Fossae region on Mars using Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM) data. Anal-

cime is the only zeolite group mineral identified on 

Mars based on its distinctive broad absorption band cen-

tered at ~ 2.5 μm and a weaker absorption at ~ 1.8 μm 

[1,2]. These studies show the difficulties associated with 

identifying other zeolite minerals using orbital spectral 

data. Identification of other zeolite species is compli-

cated by the lack of diagnostic absorption bands in the 

visible-shortwave infrared (VIS-SWIR) region [2], 

spectral similarity with Mg-polyhydrated sulfates [1], 

and residual atmospheric effects at wavelengths longer 

than 2.5 μm [4]. [2] noted that the only ways to discrim-

inate polyhydrated sulfates from zeolites are to use the 

position of the 2.3 - 2.4 μm shoulder and the shape of 

the 1.9 μm absorption. However, in most studies, non-

analcime and polyhydrated sulfates are commonly cate-

gorized as an unidentified hydrous phase (e. g. [5]), or 

as zeolite and sulfate group (e. g. [2]). 

 

In this study, a technique for estimating clinoptilo-

lite (a zeolite mineral), montmorillonite, and epsomite 

(a Mg-polyhydrated mineral) mineral abundances from 

a reflectance spectrum of mineral mixtures using spec-

tral deconvolution and a deep neural network is pre-

sented. 

 

Methods: Sixty-six ternary mineral mixtures were 

physically prepared with < 150 μm grain sizes with dif-

ferent weight percentages of clinoptilolite, montmoril-

lonite, and epsomite (Fig. 1). A combination of normal 

and skewed Gaussian curves was fitted to the absorption 

bands at 1.4 μm, 1.9 μm, and 2.2 μm of the acquired 

reflectance spectra of these mineral mixtures. Six 

Gaussian curve parameters with maximum absorption 

band depth ~ 1.9 μm, and wavelength at the maximum 

band depth, were used (along with mineral abundances) 

to train multilayer perceptron deep neural network 

(MLP-DDN) models. Forty-eight models with different 

DNN architectures and different hyperparameters were 

trained and the results were validated to find the best 

models. Winning models were tested with twenty-five 

samples including fourteen library spectra from RELAB 

and USGS spectral databases, a spectrum from a differ-

ent sample, five varying amounts of noise-added spectra 

simulating CRISM (Compact Reconnaissance Imaging 

Spectrometer for Mars) orbital spectral data, and five 

mixed spectra derived from linear mixtures of labora-

tory minerals.  

The entire study was conducted using several python 

modules (numpy, math, lmfit, matplotlib, and pytorch) 

implemented in Rstudio IDE (integrated development 

environment) (https://www.rstudio.com). An open-

source machine learning framework pytorch 

(https://pytorch.org/) was used to build deep learning 

models. 

 

Results and discussion: The calculated maximum 

band depth of 1.9 μm absorption feature (F2BD_MAX), 

is graphically shown in Figure 2, as an example. It 

shows that the maximum band depth of the 1.9 μm ab-

sorption feature (F2) increases towards epsomite from 

both clinoptilolite (mainly) and montmorillonite.  

 

From the 48 MLP-DNN models, two hidden layer 

architecture (with six units in each hidden layer) with 

ADAM optimization and Sigmoid activation function 

was selected as the best model based on its lowest root 

mean square error (RMS) yield with the validation of 

Figure 1. Schematic ternary diagram for mixtures of clinop-

tilolite, montmorillonite and epsomite. Blue points show the 

sample points of physical mineral mixtures prepared to col-

lect reflectance spectra. The sample ID for each mixture is 

shown near the sample point. 
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test data. The selected DNN model was able to predict 

mineral mixture composition with higher accuracies; 

three of five montmorillonite and four of the five epso-

mite library spectra with more than 90 % of accuracy. 

However, clinoptilolite samples show less than 50 % ac-

curacy and were always predicted as mixture of clinop-

tilolite and epsomite (Figure 3). 

 

 

The study demonstrates the difficulties of identifying 

non-analcime zeolites (e.g. clinoptilolite) from Mg-pol-

yhydrated minerals, as discussed by authors who have 

mapped hydrous minerals on Mars using hyperspectral 

image data. Random artifacts introduced by noise some-

time leads to predictions of completely different and in-

correct mineral abundances.  

 

Conclusion: We have examined the efficacy of a 

combination of spectral deconvolution and deep neural 

network techniques to estimate mineral abundances of 

zeolite, Mg-sulfate and montmorillonite mixtures using 

their reflectance spectra. Key findings are as follows, 1) 

The presence of at least ~ 10% of montmorillonite in a 

clinoptilolite-montmorillonite mixture can entirely 

mask the presence of the clinoptilolite in SWIR spectral 

data. 2) In the sample contain higher than ~ 20 % of 

montmorillonite in an epsomite-montmorillonite mix-

ture, it will mask the presence of the epsomite in SWIR 

spectral data. 3) The results show the difficulties of 

identifying clinoptilolite from epsomite even if the spec-

tra were acquired under laboratory conditions. 4) The 

absorption bands at 1.4 μm, 1.9 μm, and 2.2 μm were 

able to mathematically deconvolve by two normal 

Gaussian curves, a normal Gaussian curve with a 

skewed Gaussian curve, and a normal Gaussian curve, 

respectively. 5) Selection of the correct input features, 

architecture of DNN, and hyperparameters help to pre-

dict the mineral abundances with higher accuracies. 6) 

Care must be taken when estimating mineral abundance 

from a new dataset, even from a well-trained DNN. The 

new dataset must have similar characteristics to the 

training dataset to achieve the best results. Normalizing 

the spectral parameters before feeding it to the DNN 

might be a good approach, if working with a wide vari-

ety of datasets. 7) It will be important to incorporate the 

contribution from albedo, particle size, water content, 

and cation substitution in future models. 
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Figure 2. Ternary plots showing the maximum band depth 

of 1.9 μm absorption feature (F2BD_MAX). 

Figure 3. Ternary plot showing the original composition 

of the mineral/mineral mixture with their predicted com-

positions. Arrowheads show the predicted composition of 

each mineral mixture. 
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