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Introduction: Zeolites are among the most common
and widespread authigenic silicate minerals found in
sedimentary deposits on Earth [1]. Zeolite occurrences
in sedimentary environments on Earth can be catego-
rized into six groups based on their geologic and hydro-
logic settings: 1) saline-alkaline lakes, 2) soils and land
surfaces, 3) deep sea sediments, 4) open hydrologic sys-
tems, 5) hydrothermal alteration, and 6) burial diagene-
sis [2]. The highest concentrations of zeolites are found
in glass-rich volcaniclastic deposits, since the volcanic
glass is the major precursor of zeolites [2]. The for-
mation and stability of zeolites are strongly dependent
on the thermodynamic equilibrium of fluid-mineral re-
actions caused by water chemistry, and kinetically con-
trolled non-equilibrium growth and dissolution reac-
tions [1,2]. Therefore, the presence and nature of zeo-
lites is a good probe to reconstruct the geological and
hydrological history of zeolite-bearing environments on
Earth (e.g. [3,4]).

Zeolites have also been identified on Mars using or-
bital remote sensing data [5,6]. Previous studies empha-
sized the difficulty of identifying and distinguishing
non-analcime zeolites from polyhydrated sulfates from
the visible to near-infrared spectral data. The only zeo-
lite specifically classified was analcime, with others
classified to the zeolite/sulfate class. It is also important
to note that the zeolites have not yet been reported in
Martian meteorites or in-situ data from Mars.

Therefore, the identification and delineation of pro-
spective areas for zeolites on the surface of Mars could
serve as a guide for further searches for zeolites using
detailed orbital spectral image analysis and future in-
situ observations. The predictive modeling for mineral
exploration, one of the widely used statistical and prob-
abilistic reasoning methods in geosciences, can be used
in this case. In this study we applied the data-driven
fuzzy weight-of-evidence method to model and map the
prospective areas for zeolites on the surface of Mars.

Methods: The conceptual model developed here
first models the suitable geologic and hydrologic envi-
ronments for the formation of hydrous minerals, which
are commonly formed under lacustrine, hydrothermal,
diagenesis/metamorphic, or pedogenic processes, using
the locations of already detected hydrous minerals using
orbital data [6]. Then the presence of volcanic ash de-
posits (confirmed and modeled [7,8]) is used to confine
the favorable areas for formation/presence of zeolites.

The model used global mineralogical, geological, geo-
morphological, hydrological, physical, and elemental
abundance maps derived from orbital data as evidential
maps with the locations of the detected hydrous miner-
als using orbital data for the known mineral occur-
rences. The factor maps include NIR albedo and mineral
maps from TES [9] and OMEGA [10], dust cover index
maps from TES [9,11], TES day and night thermal iner-
tia maps [12], GRS elemental abundance maps [13], Vi-
king Global Mosaic (USGS), MOLA DEM (USGS),
Geology map [14], Valley network map [15], Open-
closed-basin map [16], pyroclastic ash distribution
model [7], and potential pyroclastic deposits [8].

All the factor maps discussed above were imported
to ILWIS (Integrated Land and Water Information Sys-
tem: https://www.itc.nl/ilwis/) via GDAL (Geospatial
Data Abstraction Library: https://gdal.org/) and ISIS3
(Integrated Software for Imagers and Spectrometers -
version 3: https://isis.astrogeology.usgs.gov/). The entire
analysis was done using ILWIS, followed by re-project-
ing to a common coordinate system and resampling into
200 m/pixel resolution using the nearest neighbor
method.

Fuzzy membership values for each evidential class
in each map were determined by using the membership
function curve derived from weights-of-evidence
method, and manually based on the expert knowledge
of the system concern [17]. The three-stage fuzzy infer-
ence engine used here consists of three parallel net-
works that sequentially combine collateral fuzzy evi-
dential maps transmitted by the fuzzifier through the
fuzzy OR and fuzzy AND operators to yield three/four
intermediate fuzzy evidential maps in the first stage.
These intermediate fuzzy evidential maps were com-
bined using fuzzy gamma operator to create the synthe-
sized fuzzy favorability map in the second stage. 25
models (inference networks) were generated changing
the map combinations, fuzzy operators, and gamma val-
ues. The best hydrous mineral favorability model (Fig-
ure a) was selected using a validation (test and train) da-
taset. The third stage involved the generation of a favor-
ability map of zeolites by combining hydrous mineral
favorability fuzzy membership map with ash thickness
and pyroclastic deposits maps (Figure b).

Results and discussion: The favorability maps for
hydrous minerals and zeolites are shown in Figure a and
b, respectively. This shows that the eastern and western
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Arabia deposits, some sites of Medusae Fossae
formation, some areas of Valles Marineris,
Mawrth Vallis, highlands north of Hellas, Terra
Cimmeria and Terra Sirenum regions show a
high probability of finding zeolites based on
this calculation.
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Conclusion: The method applied here
mapped the favorable areas for hydrous miner-
als and zeolites. This shows the capability of the
model to cope with qualitative, quantitative,
multi-source data/information on Mars, ac-
quired from orbital data, which may be impre-
cise and incomplete due to the limitations of
spatial resolution, spatial coverage, surface

g dust, instrumental biases, and other intrinsic bi-
ases.
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Figure 1. Favorability map of hydrous minerals (a), and favorability map of zeolite bearing terrains calculated using the data
driven fuzzy weight-of-evidence method. Value range indicate the favorability (1 = high favorability, 0 = low favorability).
Background in Fig (b) is a hillshade from MOLA DEM. Black outline in Fig (b): potential pyroclastic deposits.



