MARS' NOACHIAN-HESPERIAN INTENSIVE FLUVIAL ACTIVITY DRIVEN BY ATMOSPHERIC COLLAPSE. P. B. Buhler. Planetary Science Institute (pbuhler@psi.edu).

Introduction: Mars's surface was modified by liquid water flow in roughly three epochs: a modest Noachian (~>3.6 Ga) river-forming period, intensive Late Noachian-Early Hesperian (~3.6 Ga) valley-networkforming period, and later (~<3.5 Ga) localized flows [1-3]. The intensive valley network formation period is particularly enigmatic because it follows the less intense, earlier Noachian style of fluvial erosion [3], even though most processes (e.g., volcanism, impacts, thicker atmosphere) typically invoked to sustain surface water were waning by that time [1]. Climate models predict that most of Mars' water inventory was frozen in southern ice sheets at ~3.6 Ga [4], seemingly at odds with the emergence of an optimal period of fluvial erosion. However, I use numerical modeling to show that insulation from an extensive CO2 ice sheet atop a south polar H₂O ice sheet [5] due to collapse of Mars' CO₂ atmosphere at ~3.6 Ga [6, 7] would trigger extensive basal ice sheet melting, leading to globalscale flooding and an attendant period of enhanced fluvial erosion (Fig. 1).

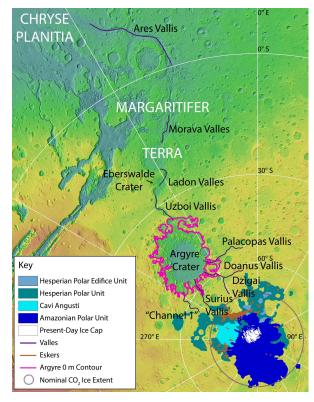
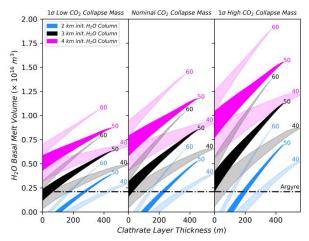



Fig. 1: MOLA [8] elevation map (blue, low = -5000 m; red, high = +6000 m) in Mars south polar projection. Map units from [9] and esker distribution from [10]. "Channel 1" is nomenclature from [11]. CO_2 ice sheet extent assumes nominal model parameters and constant 660 m depth.

Methods: A regolith adsorption and atmospheric equilibration model [12] is used to calculate the CO₂ ice cap mass $m_{CO_{2,can}}$ collapsed on a pre-existing south polar H₂O ice cap [5]. Ice column thermal structure and H₂O basal melting is modeled using a 1-D thermal conduction scheme accounting for geothermal heat F_{ogo} [13], strain heating in the H₂O ice, latent heats of sublimation and fusion, mass balance, the formation of structure-I CO2 hydrate clathrate (a cage-like structure of H₂O enclosing CO₂ guest molecules), and glacial flow. The model has appropriate temperature bounds at the surface, base, and interface between ices and clathrate. Modeled collapse initiates at 30° obliquity from an inflated 600 mbar atmosphere to a collapsed pressure of 11 mbar at the CO₂ ice cap surface (set by vapor pressure equilibrium) in 10⁴ yr [6, 7], accounting for CO₂ adsorbed in the regolith [12]. Collapse occurs onto the south pole, the favored location in Noachian climate models [4] and in the modern climate [14].

In the column model, CO₂ accumulates to thickness h_{CO_2} , set by the onset of basal CO₂ melting because model deposition far exceeds glacial flow subsidence. Clathrate forms at the CO₂-H₂O ice boundary, where it is thermodynamically favored. Column thermal profiles are calculated iteratively using temperaturedependent CO2, H2O, and clathrate thermal conductivities [15-17]. H₂O ice strain heating $F_{strain} = 2A_T \sigma^4$, with shear strain σ and empirical constant A_T ranged across low to high values from [18], is also calculated iteratively. Maximum H_2O ice column thickness h_{H_2O} is set by the onset of basal H2O melting. Modeled bare H_2O ice column $h_{H_2O} = 2-4$ km, depending on assumed F_{geo} , so initial H₂O column thickness $h_{H_2O,init}$ is set to 2-4 km, consistent with prior 3-D models [5, 10]. Basal melt volume V_{melt} is calculated from the difference in $h_{H_2O,init}$ and h_{H_2O} after CO₂ deposition, multiplied by collapse area A_{CO_2} . Melt flux is calculated from available column heat flux and latent heat of H₂O melting once the basal temperature reaches the melt point. The model does not include the effects of dust, salts, H₂O basal sliding heating, or CO₂ strain or sliding heating—any of which would enhance H₂O basal melting.

Results: Atmospheric Collapse. Accounting for uncertainty in parameters relevant to regolith adsorption [12], $m_{CO_{2,cap}} = 3.4^{+0.8}_{-0.7} \times 10^{18}$ kg. Nominal $h_{CO_2} = 660$ m for 50 mW m⁻² heat flux. Nominal $A_{CO_2} = 3.2^{+0.8}_{-0.6} \times 10^{12}$ m². Across all models, heat flux varies from ~45—100 mW m⁻², yielding a factor of ~3 variance in h_{CO_2} and A_{CO_2} .

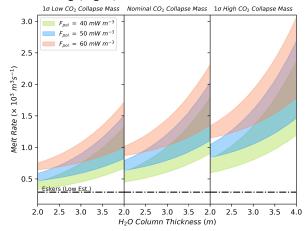


Fig. 2: Model-predicted volume of $\rm H_2O$ basal melt. Subpanels show low, nominal, and high $\rm CO_2$ collapse mass models. Colors indicate $h_{H_2O,init}$. Shaded regions indicate melt range for $F_{geo} = 40$, 50, and 60 mW m⁻² (labeled) bounded by assumptions of low and high shear heating. Argyre volume up to 0 m breach contour (pink in Fig. 1) provided for reference.

Water Melt Volumes and Flux. Model-predicted V_{melt} generally ranges from 10^{15} — 10^{16} m³ (Fig. 2), i.e., $\sim 0.2 - 2.0 \times \text{Mars'}$ present-day estimated global inventory or 4-40% of the likely maximum Late Noachian inventory [4]. V_{melt} increases with larger $h_{H_2O,init}$, more clathration, higher F_{geo} , and higher A_T . Model melt flux spans 3.3×10^{2} — 3.0×10^{3} m³ s⁻¹, consistent with basal melt production estimated from Hesperian Polar Unit eskers [10, 11] (Fig. 1, 3). Collapsetriggered basal melting is also consistent with the lack of association between eskers and volcanic edifices [10]. For all model runs, complete column melt times are a few × 10⁵ yr. Atmospheric collapse likely lasted $\sim 10^4 - 10^7$ yr, for collapse driven by a dip to low (<~30°) obliquity during a generally high obliquity state or entry into a persistently low (<~30°) obliquity state, respectively [19], so complete melting may or may not occur during a given collapse.

Discussion: Several 100s-km sinuous valleys leading from the Hesperian Polar Unit (Fig. 1) have been previously proposed to record melt water flow from a Noachian-Hesperian ice cap into a lake in Argyre Crater [11, 20]. Argyre paleolake has been proposed to have breached, sourcing flow into the Uzboi-Ladon-Marova system, and delivering water at least as far equatorward as Margaritifer Basin [21] (Fig. 1). Such delivery could potentially seeding a previously proposed cycle of Hesperian outflow megaflooding in Chryse Planitia [23]. Argyre overflow has been criticized primarily because no plausible mechanism for delivering sufficient water to cause breaching has previously been identified, although morphologic evidence is consistent with such an overflow [20]. Mod-

eled V_{melt} indicates that polar basal melting triggered by atmospheric collapse could provide water sufficient for breaching (Fig. 2).

Fig. 3: Basal H₂O melt rate as a function of H₂O column thickness for various scenarios. Green, blue, and red regions indicate range of melting rates from low to high shear heating for $F_{geo} = 40$, 50, and 60 mW m⁻², respectively. Melt rate estimate from eskers [10] is provided for reference.

Conclusions: Water delivery from cyclic collapse events modeled here has timescales consistent with inferred valley network formation from episodic runoff over $\sim 10^6$ yr followed by abrupt cessation of fluvial activity [1]. Over $\sim 10^8$ yr, the effectiveness of polar basal melting would decrease due to the decline in Mars' volatile inventories [22] and F_{geo} [13]. These model results indicate that Mars' period of intensive fluvial activity near the Noachian-Hesperian boundary may have occurred in a collapsed-atmosphere climate similar to modern Mars, permitted principally by the formation of large CO_2 and H_2O polar deposits.

Acknowledgments: This work was supported by NASA Grant 80NSSC21K0212. References: [1] Fassett, C.I., Head, J.W., 2011. Icarus 211, 1204-1214. [2] Kite, E.S., 2019. Space Sci Rev 215, 10. [3] Irwin, R.P. et al., 2005. JGR Planets, 110(E12). [4] Fastook, J.L., Head, J.W., 2015. PSS 106, 82-98. [5] Fastook, J.L. et al., 2012. Icarus 219, 25-40. [6] Forget, F. et al., 2013. Icarus 222, 81-99. [7] Soto, A. et al., 2015. Icarus 250, 553-569. [8] Smith, D.E. et al., 1999. Science 284, 1495-1503. [9] Tanaka, K.L. et al.., 2014. PSS 95, 11-24. [10] Scanlon, K.E. et al., 2018. Icarus 299, 339-363. [11] Head, J.W., Pratt, S., 2001. JGR Planets 106(E6). [12] Buhler, P.B., Piqueux, S., 2021. JGR Planets 126, e2020JE006759. [13] Solomon, S.C. et al., 2005. Science 307, 1214-1220. [14] Buhler, P.B. et al., 2020. Nat Astro 4, 364-371. [15] Mellon, M.T., 1996. Icarus 124, 268-279. [16] Petrenko, V., Whitworth, R., 1999. Oxford U Press. [17] Jiang, H., Jordan, K.D. 2010. J Phys Chem C 114, 5555-5564. [18] Cuffey, K.M., Paterson, W.S.B. 2010. Academic Press, 223-284. [19] Laskar, J. et al., 2004. Icarus 170, 343-364. [20] Hiesinger, H., Head, J.W., 2002. PSS 50, 939-981. [21] Grant, J.A., Parker, T.J., 2002. JGR Planets 107, 4-1. [22] Jakosky, B.M., 2021. Ann Rev Earth Plan Sci 49, 71-93.

[23] Moore, J.M., et al., 1995. JGR Planets 100, 5433-5447.