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Introduction:  The existence of Sr nucleosynthetic 

anomalies in CAIs and their host meteorites, relative to 
Earth, is well documented [1-7]. Typically on the order 
of a few tens to hundreds of ppm (relative to NBS987 
after internal normalization to 86Sr/88Sr=0.1194), the 
origin of these anomalies remain a matter of debate. In-
deed, it is unclear if the apparent 84Sr-excesses seen in 
internally normalized data result from variations in the 
p-process nuclide 84Sr (e.g., [5-7]), or reflect (through 
internal normalization) an r-process anomaly in 88Sr 
(e.g., [2-4]).  

The uncertainty surrounding the nature of the 84Sr 
anomalies has implications beyond unraveling the pre-
solar heritage of the solar system. Most importantly, it 
affects dating of volatile element depletion in the early 
solar system. Indeed, given that Rb being is more vola-
tile than Sr (Tc50 of 800 versus 1464 K, respectively  
[8]), one can constrain the timing of the evapora-
tion/condensation event(s) that lead to the depletions in 
moderately volatile elements observed in planetary bod-
ies [1, 9-10], assuming (i) that the initial 87Sr/86Sr ratio 
of solar system materials is known and homogeneous, 
and (ii) that 87Sr/86Sr variations are entirely due to 87Rb 
decay. These assumptions break down if nucleosyn-
thetic anomalies present in the nascent solar system 
were not completely homogenized. Indeed, 87Sr/86Sr 
values are calculated using an internal normalization 
scheme to a fixed 86Sr/88Sr ratio, which is only war-
ranted if the nucleosynthetic anomalies in CAIs and 
bulk solar system materials reside in the p-process iso-
tope 84Sr. If, however, the anomalies lie on 86Sr (s-defi-
cit) or 88Sr (r-excess), the normalization will shift the 
initial 87Sr/86Sr ratio, and variations in initial 87Sr/86Sr 
would no longer reflect temporal differences, but in-
stead the compounded effect of radiogenic ingrowth and 
nebular isotopic heterogeneity.  

These outstanding questions can be answered, pro-
vided that one finds materials that (i) formed early in the 
history of the solar system, and (ii) were minimally af-
fected by radiogenic ingrowth of 87Sr. As the oldest ma-
terials formed in the solar system, CAIs are the prime 
target for such investigations. Yet, finding CAIs with 
pristine, low Rb/Sr ratios is non-trivial because Rb (and 
to a lesser extent Sr) are fluid-mobile, and the Rb-Sr sys-
tematics in CAIs is often significantly disturbed during 
aqueous alteration (e.g., [3, 7, 11]).  

In order to isolate phases with low Rb/Sr ratios and 
constrain the nature of the carrier of 84Sr anomalies, we 
subjected to a step-leaching dissolution protocol a suite 
of nine fine-grained (fg-)CAIs from Allende [12]. Fg-
CAIs were chosen for their relatively primitive charac-
teristics: they display condensate-like features (petro-
graphic and group II REE patterns), have never been 
melted, and their chemical compositions match those 
predicted by equilibrium thermodynamic calculation for 
partial condensation from a gas of solar composition gas 
(e.g., [13-14]). Because in-situ methods would provide 
insufficient precision, the isolation of pristine compo-
nents (i.e., with low primary Rb/Sr ratios) was per-
formed chemically via step-leaching.  

Methods: After visual inspection of slabs of the Al-
lende CV chondrite, CAIs with fine-grained morpholo-
gies were extracted using clean steel dental tools [15]. 
Given the limited mass of the samples (13 to 158 mg), 
and to ensure sufficient precision even on the smallest 
sample fractions (<10% of total Sr in the CAI), 1013 Ω 
feedback resistors were used on TIMS instruments as 
these permitted high-precision Sr measurements on load 
sizes as low as 150 pg. Each leachate fraction was split 
into three aliquots to quantify (i) nucleosynthetic anom-
alies through internal normalization on unspiked mate-
rial, (ii) stable 86Sr and 88Sr relationships using double 
spike methodologies, and (iii) 87Rb abundances by high-
sensitivity ICP-MS measurements to assess the contri-
bution of 87Rb-decay on 87Sr/86Sr variations and esti-
mate initial 87Sr/86Sr values using Rb-Sr isochrons. At 
each stage of the step-leaching process, the residues 
were weighed to estimate the amounts of components 
dissolved, and their chemical and Sr-isotopic composi-
tion. Two instruments were used in this work: the 1011 
Ω equipped Triton TIMS at Victoria University of Wel-
lington (VUW), which was used for large Sr loads (100-
1000 ng), and the 1013 Ω equipped Triton XT at the 
Thermo-Fisher factory in Bremen, which was used for 
Sr loads below 100 ng.   

Elemental and isotopic release patterns: Each 
CAI sample was subjected to a five-step leaching proto-
col of increasing acid strength and temperature similar 
to those in [6]. Of the nine CAIs analyzed, only one had 
no material remaining after the fourth leaching step. In 
all cases, the first three leach steps (L1 to L3) contained 
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>80% of the total Sr budget and the amount of Sr re-
leased in each step typically decreased by 2-3 orders of 
magnitude across the total experiment (Fig. 1). To test 
the efficiency of the step-leaching protocol and accu-
racy of the gravimetric accounting for Rb and Sr yields, 
a separate fraction of powder from each CAI was dis-
solved in bulk (using a Parr bomb) to ensure total disso-
lution, and analyzed in the same way as the leach ali-
quots. Excellent agreement was observed between the 
Sr isotopic characteristics for the bulk samples versus 
the gravimetrically summed leach fractions. 

p-process anomalies: All leachates and final resi-
due show positive µ84Sr values. The first three leaching 
steps (80 to 99% total Sr) have elevated µ84Sr values that 
are within the range of published values observed in 
bulk single CAIs (~ 100-200 ppm, Fig. 1). In contrast, 
the final leach (L4) and residue digest (L5) show µ84Sr 
anomalies reaching per-mille to percent levels (Fig. 2), 
and the fractions most depleted in Sr also display the 
largest anomalies.  

If the positive µ84Sr values measured here were the 
result of r-process excesses in 88Sr propagating to 84Sr 
as an internal normalization (to 86Sr/88Sr = 0.1194) arti-
fact, this would also result in apparent negative 87Sr 
shifts of a magnitude half those of 84Sr (i.e., the samples 
should appear less radiogenic). Despite the large µ84Sr 
values in fractions L4 and L5, no negative 87Sr anoma-
lies are seen in those fractions (Fig. 2), which provides 
the strongest evidence to date that these anomalies are 
true (and not only apparent) 84Sr-excesses, due to the 
presence of  p-process carriers in the early solar  nebula 
and incorporated into fg-CAIs.  

Our data are consistent with the work by Pravdiv-
tseva et al. [16] which, based  on a step-wise pyrolysis 
study of noble-gas isotopic signatures in fg-CAIs from 
Allende, argued that distinct presolar carriers are pre-
sent in fg-CAIs. Pravdivsteva et al. proposed that the 
carriers were presolar SiC (<0.2 µm in size). Although 
our data do not permit identification of the specific car-
rier(s) of the 84Sr anomalies, SiC grains are extremely 
unlikely candidates, as the few SiC grains that have 

been measured for Sr isotopes (n=39) display either so-
lar composition or negative anomalies (down to -90.6 ± 
2.0 %) [17-19]. In fact, no presolar grains, to date, have 
been found with Sr p-process signatures. We present 
progress on a search for the carrier of the 84Sr anomalies 
in a companion abstract (by Marquez et al.). 

The fact that Sr anomalies lie in the p-process iso-
tope means that careful re-evaluation of the assumptions 
and hypotheses around the concept of the timescales of 
volatile depletion in the early solar system based on Rb-
Sr systematics are necessary [3, 9-10].  
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Fig. 1: Sr ng (filled triangles) and e84Sr (filled circles) 
in successive leachates for one of the CAIs studied here 
(7 of the 9 CAIs show similar patterns). 

 
Fig. 2: Anomalies (µ84Sr) vs 87Sr/86Sr, both from internally nor-
malized data. Arrows show expected relationships for radiogenic 
ingrowth, 84Sr- excess, and correlation arising from internal nor-
malization to 88Sr/86Sr in the presence of r-process anomalies. 
Color areas show regions populated by data from L1 to L5. 
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