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Introduction: Habitats with a taphonomic window1 

are high priority targets for astrobiology missions to 

Mars [1]. However, if life existed on Mars it did not 

interact with its physical environment in a way that has 

been obvious to identify from orbit. Studying terrestrial 

Mars analogs can inform us of the types of features that 

serve as habitats with a taphonomic window on Earth, 

and by extension the types of features that should be 

sought on Mars. But what spatial resolutions are 

necessary to positively identify such targets? 

To address the problem of establishing thresholds of 

identification in spatial resolution, we are assessing the 

ability of a deep convolutional neural network (CNN) to 

perform semantic segmentation (classify each pixel) on 

images of the astrobiologically-relevant Mars-analog 

environment, Salar de Pajonales (SdP), in Chile (Fig. 

1A). Our aim is to discover the resolutions at which the 

habitats at SdP are no longer identifiable by the CNN to 

understand if the same types of features could be 

identified in salt-encrusted basins on Mars. CNNs excel 

at many tasks related to image analysis, including image 

classification [2], with modern CNNs capable of 

outperforming human analysts [2, 3]. Our investigation 

requires a consistent analysis of the same terrain over 

many ground sampling distances (GSDs). A single 

human analyst would become biased after the first 

classification task, and many human analysts would 

vary in their ability to classify a scene. Therefore, a 

CNN is a natural choice to tackle this problem.  

Here we present initial results of the semantic 

segmentation of our highest resolution (3 cm/pixel) 

scene of SdP. In future work, we will evaluate the CNN 

performance at progressively lower GSDs to establish 

thresholds of identification for habitats at SdP. 

Geologic Background and Relevance to Mars: 

Salar de Pajonales (SdP) is a salt-encrusted basin in the 

Chilean Altiplano (25°08'29"S, 68°46'20"W, 3547m, 

Fig. 1A) [4]. Its polyextreme characteristics make it a 

suitable analog for a post-Noachian martian climate [5]. 

Our study site within SdP is a gypsum-dominated area 

that notably hosts ridges and tumuli [6] that serve as 

endolithic habitats [5], and a “patterned ground” unit 

that represents a biological soil crust [5] (Table 1, Fig. 

1B).  

Data and Methods: We captured images of our 

 
1 Sedimentary and diagenetic circumstances conducive to 

preservation of biosignatures [1]. 

Textural-morphological Class Description 

Patterned Ground 

Centimeter- to decimeter-scale 

polygons of light-toned, 

uncovered salar surface. 

Ridges 

Positive topographic features 

with length:width values > 2:1. 

Typically 1-2.5 m-wide and 

decameters long. Can be eroded 

or uneroded. 

Tumuli 

Tumuli are circular to sub-

circular positive topographic 

features with length:width values 

of ≤ 2:1. 

Figure 1: A. Context of SdP in S. America and location of the 

study area within SdP. B. Examples of tumuli (red), ridges 

(pink), and patterned ground (green). 

Table 1: Descriptions of the 3 textural-morphological classes 

associated with microbial colonization at SdP. Colors correspond to the 
outline colors in Fig. 1B. 

 

2510.pdf52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548)



field site and surrounding terrain using a 20-megapixel 

camera mounted on a small unmanned aerial system 

(sUAS). CNNs require large volumes of data for 

training, i.e., the process of adjusting the CNN weights 

to optimize performance, and an independent dataset for 

performance testing. Therefore, we captured images 

over two non-overlapping regions of the study area for 

CNN training and testing. Individual image frames were 

processed using Pix4D Mapper into digital elevation 

models (DEMs) and orthophotomosaics. DEMs were 

combined with orthophotomosaics to make 4-band data 

products on which CNNs were trained and tested.  

Ground truth classification of the training and 

testing scenes was accomplished by a human analyst 

with on-the-ground knowledge of the field site. The 

scenes were classified into 12 “textural-morphological 

classes” (TMCs). TMCs were based on both field 

experience and a visual assessment of texture and 

morphology in the scenes. Our results focus on the three 

TMCs that primarily serve as habitats at SdP: ridges, 

tumuli, and patterned ground [5].  

Training and evaluation of the CNN. For our study, 

we chose to use the well-established CNN ResNet50, a 

50-layer-deep residual network ideal for segmentation 

tasks [7]. Tools available in the MATLAB® Deep 

Learning Toolbox and Deep Network Designer were 

used to train a fully-connected version of ResNet50 with 

transfer learning, which carries several advantages over 

training a model from scratch [e.g., 2, 8]. In total, 316 

images at 503x503 pixels were extracted for training 

from the training scene. 

We evaluated the performance of the ResNet50 

CNN using the Boundary F1 contour matching score 

[9]: BF = 2*precision*recall/(precision+recall) [see 9 

for a more complete description of the calculation of BF 

score]. BF scores range from 0 to 1, with 0 being least 

and 1 being most accurate. The BF score is useful when 

a measure is desired that matches more closely with a 

human qualitative assessment than other metrics, such 

as the intersection over union [9]. 

Results: The classification map resulting from our 

ResNet50 semantic segmentation is presented in Fig. 2B 

along with a visible image of the test scene (Fig. 2A) 

and the analyst-derived “ground truth” classification 

map (Fig. 2D). The ResNet50 model performed worst 

on the patterned ground TMC, which received a BF 

score of 0.19. Ridges received a score of 0.92 and tumuli 

received a score of 0.71. These scores are comparable to 

a CNN-based semantic segmentation recently 

performed on HiRISE images of Mars [10]. 
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Figure 2: Summary of semantic segmentation results. A. Reference image of the scene used to test CNN 
performance. B. Classification map resulting from the ResNet50 semantic segmentation of the scene. 

Colors correspond to the bar to the right. C. Bar chart showing the BF score for patterned ground, ridges, 

and tumuli.  Colors correspond to B and D. D. Ground truth classification map. 
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https://www.mathworks.com/discovery/transfer-learning.html.
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