
UTILITY OF GENERATIVE APPROACHES FOR METEORITE AND ASTEROID CLASSIFICATION. 
Sydney M. Wallace1, M. Darby Dyar1,2, Thomas H. Burbine2, and Daniel Sheldon3. 1Planetary Science Institute, 1700 
East Fort Lowell, Suite 106, Tucson, AZ 85719 (smwallace@g.hmc.edu); 2Dept. of Astronomy, Mount Holyoke 
College, 50 College St., South Hadley, MA 01075; 3College of Information and Computer Sciences, University of 
Massachusetts Amherst, Amherst, MA 01003. 

 
 
Introduction: Asteroids date back to the creation of 

the Solar System and can provide valuable insights into 
its composition and formation. With advancements in 
remote spectroscopy, huge improvements have been 
made in classifying asteroids to better our understanding 
of them. The Bus-DeMeo (BDM) taxonomy [1] 
leverages slope scores of reflectance spectra and uses 
principal component analysis to cluster similar samples 
together. However, the current BDM automated 
classification program does not make use of newly 
acquired asteroid data or the advancements made in 
machine learning (ML). This project combines these 
new developments and provides new findings about the 
composition and creation of the Solar System. 

There are few physical asteroid sample returns we 
can leverage as a ground truth for the classification of 
asteroids, though more samples are soon forthcoming 
(Hayabusa 2 [6] and OSIRIS-Rex [7]). As proxies for 
asteroids, meteorites are smaller pieces of asteroid that 
have fallen to Earth; their compositions, petrology, and 
mineralogy have been thoroughly studied. Thus, our 
understanding of the spectroscopic characteristics of 
meteorites can provide a ground truth for models built 
to classify asteroids. How well the model handles 
asteroid-specific challenges must be highly prioritized 
during model selection. 

The task of asteroid classification includes many 
issues that need to be carefully considered when 
building and selecting a model. Relatively few 
meteorite and asteroid spectra are available compared to 
the millions of examples other commonly used ML 
datasets can supply (images, pages of text, etc.). 
Instrument-dependent noise also affects spectral 
measurements. This problem is less relevant when 
building models for meteorites, for which most data 
have been acquired at one facility (e.g. Keck/NASA 
Reflectance Experiment Laboratory (RELAB) at Brown 
University [3]). But given the small number of asteroid 
spectra available, data from many different telescopes 
must be used. Therefore, classification models that can 
handle spectra taken across multiple instruments are 
required.  

This paper highlights the importance of these factors 
in model selection. Preliminary results are reported on 
the use of Fisher Discriminant Analysis (FDA). 
Findings from [2] are extended here to include meteorite 
spectra from two spectrometers rather than just one. 

Data: This project uses two separate sub-datasets 
from our collection of meteorite spectra. The first 
dataset (we will denote as RELAB-only) has 1,621 
meteorite spectra spanning 27 classes. This set only 
includes spectra (from archives and unreleased) from 
RELAB and was resampled to 0.01 µm resolution over 
a wavelength range of 0.3 to 2.5 µm. The second dataset 
(we will denote as Mixed) includes 156 spectra from 
both RELAB and the University of Winnipeg (PSF) [8]. 
In total, there are 68 L-type, 56 H-type, and 32 eucrite 
spectra that have been acquired at either facility. These 
spectra were resampled to 0.01 µm resolution over a 
wavelength range of 0.35 to 2.5 µm. 

Methods: We used in-house tools built in Python 
from the Scikit-Learn library [4] and from Kernel FDA 
(KFDA) [5], which is a library that is compatible with 
Scikit-Learn. In [2], a Support Vector Machine (SVM) 
with a Gaussian kernel performed the best out of all the 
classification models tested. FDA is again implemented 
here as the first generative approach to be tested.  

Generative models assume that there is a functional 
probability over all of the classes while discriminative 
models assume there is a functional probability of a 
class when given a spectrum. Because generative 
approaches model all of the possible classes, they are 
better at handling cases when the test data may lie 
outside of the training data distribution and when there 
are relatively small amounts of training data. For these 
reasons, a generative model was selected for 
performance comparison to the discriminative models 
analyzed in [2]. 

KFDA is a specific type of linear discriminant 
analysis (LDA), which is a dimensionality reduction 
technique closely related to principal component 
analysis. It works by defining new axes that maximize 
the distance between the means of each class and 
minimizing the variation within each class. The kernel 
defines how this “distance” metric is defined. To have a 
more direct comparison between discriminative and 
generative approaches, we used the same kernel 
(Gaussian) as the SVM.  

Results of KFDA trained on RELAB-only 
Meteorites: A Gaussian Kernel FDA with a g = 0.075 
achieved a 59% accuracy on the validation set, only 
~6% worse than the best discriminative model. As seen 
in Figure 1, many of the missed predictions are 
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misclassified as meteorites that are closely related to the 
true label. Although this model did not outperform 
previous models across all 27 classes, it performs 
equally as well on the carbonaceous chondrite classes 
(CI, CM, CO, CV-CK, C1/2, and CR) as highlighted in 
Figure 1. Both the SVM and the KFDA classified 44/57 
of these type of meteorites correctly. However, KFDA 
did better at correctly classifying more of the meteorites 
that had fewer examples. This can be clearly seen with 
how the C1/2 meteorites are classified by both models. 
The SVM classifies most examples as CM, the 
carbonaceous chondrite class that has the most 
examples. KFDA classified most of these meteorites 
correctly, showing it learned the class itself rather than 
classifying those meteorites as the most likely class 
(CM). This shows that KFDA is generally better at 
learning classes with few examples. 

Results of KFDA and SVM on the Mixed set of 
meteorite spectra: The top-performing SVM model 
without baseline removal had the same hyperparameters 
as the top performing model from the previous section. 
These hyperparameters did not fare well with this 
experiment because SVM models struggle when only a 
few examples of each class are available for training. 
Thus, we selected hyperparameters based on the 
performance score from the training data. Three 
separate models were trained on three different sets of 
training data: RELAB data, PSF data, and a 50/50 mix 
of data. The results shown in Table 1 display the 
performance score for each of the three models trained 
on the three training sets and their scores on the three 
test sets. 

The KFDA hyperparameters performed well on the 
smaller datasets with no tuning required other than 
reducing the maximum number of components used, 
because the number of classes was reduced from 27 to 
3, and this value can go no higher than one less the 
number of classes in the dataset. As described earlier, 
the structure of a KFDA model allows for the model to 

perform better when handling classes with only a few 
examples. 

 
SVM 

Trained on: RELAB PSF Mixed 
RELAB 0.611 0.500 0.611 
PSF 0.611 0.694 0.611 
Mixed 0.611 0.528 0.582 

KFDA 
Trained on: RELAB PSF Mixed 
RELAB 0.806 0.583 0.667 
PSF 0.583 0.806 0.667 
Mixed 0.667 0.586 0.806 
Table 1. The top and bottom tables show results for the 
SVM and KFDA models respectively. The far-left column 
indicates what kind of data the model was trained on 
(RELAB, PSF, or Mixed) and the following columns show 
what testing data were used for the score. 
 

Discussion: Even if the KFDA model did not 
perform as well as the SVM with the RELAB-only 
dataset, it was more promising in its ability to detect 
patterns in the less-populated classes. Furthermore, 
when we tested both models against smaller datasets 
that had measurements from two different instruments, 
KFDA performed better than SVM, except for one 
scenario when the model is trained on PSF data and 
tested with RELAB data. This further proves that KFDA 
can better detect class-specific patterns when data 
examples are limited and can better handle the 
challenges of instrument noise. 

Summary: There are important challenges to 
consider in selecting the best model for asteroid 
classification. There are fewer than a thousand total 
spectra and they are all taken from various instruments 
around the world. Luckily, we can leverage data from 
meteorites to better understand this relationship and to 
also supply a ground truth to classification labels. 
Generative approaches, such as KFDA, can better 
perform under these task-specific challenges. 
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Figure 1. The confusion matrices for the carbonaceous 
chondrites in the validation set that were correctly and 
incorrectly classified. Each square indicates the proportional 
value that was identified for each class. 1.0 implies 100% 
accuracy. 
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