
WORKING WITH SOLAR SYSTEM ELEMENTAL AND ISOTOPIC ABUNDANCES IN PYTHON.
Reto Trappitsch, Brandeis University, Department of Physics, 415 South St, Waltham, MA 02453, USA
(reto@brandeis.edu)

Motivation In recent years, python1 has become an
important programming language for data processing in
the sciences. One clear example of this development is
the prevalence of astropy,2 a package that contains
common tools required for astronomy and astrophysics
with python. The two astropy papers [1] and [2] have
at the time of this writing received 3833 and 1513 cita-
tions, respectively, as recorded in the ADS database.3

In cosmochemistry and astrophysics we are often
faced with measurements and model calculations that
need to be compared to the Solar System elemental and
isotopic composition. Here we present a python pack-
age named iniabu (short for initial abundances) that
can be used to query elemental and isotopic solar abun-
dances. Currently implemented databases are Lodders et
al. [3] (default) and Asplund et al. [4]. Furthermore, the
NIST database4 is used to provide element and isotope
masses. Abundances can be queried as linear number
abundances (normalized to a silicon abundance of 106),
logarithmic number abundances (normalized logarithmi-
cally to a hydrogen abundance of 12), and mass fractions
(normalized to a total sum of one for all elements). Fur-
thermore, iniabu allows the user to directly calculate
element and isotope ratios, δ-values, internally normal-
ized isotope ratios, and bracket notation as frequently
used in astronomy.

The source code is released open source under the
GNU Public License GPLv2 and is available for down-
load from GitHub.5 Furthermore, the package is docu-
mented in detail on readthedocs6 and example usage files
using Jupyter notebooks are available on the project’s
GitHub site as well.

Installation The currently available, stable version of
the software is v1.0.0, which is available for download
from the python packaging index PyPi.7 Alternatively,
the most recent development version can also be directly
installed from GitHub5 using pip. We are planning reg-
ular releases on PyPi as new features become available.

Currently, iniabu is compatible with python 3.6
and newer. The only required dependency is numpy [5].

1https://python.org
2https://www.astropy.org
3https://ui.adsabs.harvard.edu/
4https://www.nist.gov/pml/atomic-weights-and-is
otopic-compositions-relative-atomic-masses

5https://github.com/galactic-forensics/iniabu
6https://iniabu.readthedocs.io
7https://pypi.org/

Usage Here we briefly discuss some use usage cases
that might be of interest for the cosmochemistry com-
munity. For more examples and a full discussion of all
features, see the documentation.6 Note that subsequent
example depend on previous ones, e.g., importing the
module is only shown in the first example.

For general usage, we recommend importing an in-
stance of iniabu as following:

>>> from iniabu import ini

This will load the default database from Lodders et al.
[3] with linear number abundances (abundance of silicon
normalized to 106).

Various package settings are implemented as prop-
erties and can thus be queried and assigned in the same
way as regular variables. For example, the set database
and the set units can be queried in the following way:

>>> ini.database
'lodders09'
>>> ini.unit
'num_lin'

Elements and isotopes can be loaded into variables
using the ini.ele and ini.iso proxy lists. The fol-
lowing is an example for helium:

>>> ele = ini.ele["He"]
>>> isos0 = ini.iso[["He-3", "He-4"]]
>>> isos1 = ini.iso["He"]

Here, the first line stores the element helium in a vari-
able named ele. The second and third line are in fact
identical and store all isotopes of helium in variables.
Here, calling an isotope with an element name results
in all isotopes of that specific element being returned.
Element names must always be given using their abbre-
viation, isotopes using their abbreviation followed by a
dash and the mass number of the isotope. The second
line of above example shows that multiple entries can be
queried simultaneously if passed as a list.

Having these variables defined, various properties of
elements and isotopes can be queried. Some examples:

>>> ele.abu_solar
2511030000.0
>>> isos0.mass
array([3.01602932, 4.00260325])

The first line queries the solar abundance of helium. The
second line queries the masses of the isotopes stored in

2485.pdf52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548)

mailto:reto@brandeis.edu
https://python.org
https://www.astropy.org
https://ui.adsabs.harvard.edu/
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
https://github.com/galactic-forensics/iniabu
https://iniabu.readthedocs.io
https://pypi.org/


variable isos0. The output shows a feature of iniabu,
namely that if more than one value is returned, we auto-
matically return a numpy array instead of a regular
python list. This enables the immediate usage of the out-
put for subsequent mathematical operations.

δ-values for some data with respect to the Solar Sys-
tem initial abundances can be calculated. Let us assume
we have two measurements of 29Si/28Si that are stored in
a list called msr. The δ-values can then be calculated as
following:

>>> msr = [0.06, 0.05]
>>> ini.iso_delta("Si-29", "Si-28",

msr)
array([182.05128205, -14.95726496])

Note here that δ-values are by default returned in per-
mil. To change this behavior the keyword argument
delta factor can be used.

All functions of the code are extensively documented
with docstrings. This means that if the user is running
in ipython or from a Jupyter notebook, help can be
obtained by simply adding a question mark after a com-
mand, e.g., ini.iso delta?. This will bring up the
docstring and describe briefly all arguments and key-
word arguments. Full API documentation is also pro-
vided online.6

Database inconsistencies While linear number abun-
dances are normalized to silicon equaling 106 as de-
scribed above, this is only true within numerical preci-
sion for the Lodders et al. [3] database. For iniabu we
used the data in table 10 of [3]. There, the silicon isotope
abundances sum up to a total of 999,700. We did no re-
normalize to 106 since within the available precision the
two numbers are equal.

Furthermore, the abundance of 138La in table 10 of
[3] is given as 0.000. This number is reported with
too few significant digits. Using the atom percentages
for both lanthanum isotopes and the solar abundance
for 139La, we calculated a solar abundance for 138La of
0.0004. This value is now used in iniabu.

Community The idea behind iniabu is to enable the
whole community to easily interact with Solar System
abundances in python. A small number of features, such
as calculating δ-values, have so far been incorporated.
Furthermore, various tests have been done in order to en-
sure the accuracy of the returned values. However, future
development should also be inspired by the community.

The GitHub5 site allows for the possibility to raise
issues. These issues are intended for bug reports, dis-
cussing problems that occur with the package, and to re-
quest new features and enhancements.

We also enabled a discussion board on GitHub.5 The
idea is that users can discuss their experiences or provide
examples for others to look at and study.

In the interest of fostering an open and welcom-
ing environment we adopted a code of conduct for the
iniabu project. The code of conduct can be found on
the GitHub site.5

Contribution As an open source project we welcome
contributions to iniabu from the community. The
documentaion6 contains a detailed developer’s guide
with instructions on how to get started. Planned contribu-
tions of features and enhancements for iniabu should,
preferentially be discussed first by raising an issue.

To ensure maintainability, full coverage code testing
using pytest8 is required. Test automation is provided
with nox.9 The standard nox configuration will auto-
matically be run using GitHub Actions when a pull re-
quest is submitted and merging into the main branch is
blocked if these tests fail. This ensures that the package
stays functional, backwards compatible, and simplifies
maintainability. Automatic tests also run xdoctest10

to ensure that all docstring examples are functional.
To enhance code readability we enforce the

flake811 style guide as well as automatic code format-
ting using black.12 The latter will automatically take
care of most style guide requirements and can, e.g., be
used with the provided pre-commit hook.13

Acknowledgement We would like to thank Ondrea
Clarkson, Falk Herwig, Maria Lugaro, and Marco Pig-
natari for helpful discussion on features and testing for
v1.0.0 of iniabu.

References: [1] Astropy Collaboration et al. “Astropy:
A community Python package for astronomy”. In: A&A
558 (2013), A33. [2] Astropy Collaboration et al. “The
Astropy Project: Building an Open-science Project and
Status of the v2.0 Core Package”. In: AJ 156.3 (2018),
p. 123. [3] K. Lodders, H. Palme, and H.-P. Gail. “Abun-
dances of the Elements in the Solar System”. In: Solar
System. Ed. by J. E. Trumper. Springer-Verlag Berlin
Heidelberg, 2009. Chap. 4.4, pp. 560–630. [4] M. As-
plund et al. “The Chemical Composition of the Sun”.
In: Annual Review of Astronomy and Astrophysics 47
(2009), pp. 481–522. [5] Charles R. Harris et al. “Ar-
ray programming with NumPy”. In: Nature 585 (2020),
pp. 357–362.

8https://docs.pytest.org
9https://nox.thea.codes/
10https://github.com/Erotemic/xdoctest
11https://flake8.pycqa.org
12https://github.com/psf/black
13https://pre-commit.com/

2485.pdf52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548)

https://docs.pytest.org
https://nox.thea.codes/
https://github.com/Erotemic/xdoctest
https://flake8.pycqa.org
https://github.com/psf/black
https://pre-commit.com/

