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Introduction:  Rover autonomy can be improved 

with machine learning algorithms that supplement on-

board decision-making processes. Rovers, or other fully 

or semi-autonomous vehicles, tasked with surveying the 

surface of a planetary body are typically equipped with 

one or more spectrometers used for mineral 

identification. We present two improvements to further 

the development of such vehicles. First is a co-

registered dual-band Raman spectrometer that mitigates 

low signal-to-noise ratio bands from one wavelength 

with higher signal-to-noise ratio bands from another. 

Second is a neural network trained with multimodal 

machine learning, that extracts higher level features 

from both wavelengths, for the purpose of mineral 

classification in both pure and multi mineral samples. 

Dual-band Raman Spectroscopy: The 

spectrometer was developed by Spectra Solutions, Inc 

(SSI). It has two co-registered excitation lasers, with 

wavelengths 532 nm and 785 nm, that consecutively 

irradiate the same 50-micron area on the surface of a 

sample. The 532 nm laser records a wavenumber range 

130-4000 cm-1 at a resolution of 2.5 cm-1 and the 785 

nm laser records a wavenumber range 190-2900 cm-1 at 

a resolution of 0.5 cm-1. 

Data Collection: Dual band Raman spectra were 

measured of minerals and rocks from a subset of 

Gulick’s extensive sample collection. Of current focus 

were minerals gypsum, muscovite, plagioclase, 

potassium feldspar, and quartz contained in rocks, as 

well as mineral samples of carbonates, halite, olivine, 

and pyroxene.  

We also used Raman mineral spectra from the 

RRUFF repository (https://rruff.info). 

Preprocessing:  We truncated wavenumbers which 

had low signal to noise ratios. Wang et al. [1] concluded 

that most diagnostic mineral bands are between 400 and 

1300 cm-1 when using a 532 nm excitation laser to 

analyze anhydrous and Mg-sulfates. We determined that 

the range 200 to 1200 cm-1 was sufficient for minerals 

in our study, because this range had the highest signal-

to-noise ratio in our spectra. We also used the 

wavenumber range 3300 to 3700 cm-1 to identify 

mineral hydration bands. Truncating wavenumbers 

reduced the degrees of freedom to 1173. This provided 

three modalities, as shown in Table 1.  

Intensity values for each spectrum were 

independently min-max normalized between 0 and 1 to 

enable better comparison of spectra. 

 

Table 1: Three modalities of this study. 

Modality Wavelength Wavenumbers 

(1) 532 nm 200-1200 cm-1 

(2) 532 nm 3300-3700 cm-1 

(3) 785 nm 200-1200 cm-1 

 

Principal Component Analysis (PCA) was typically 

used independently on each modality to further reduce 

the degrees of freedom to less than 100. We used all 

components which contributed to at least 1% of the total 

variance, which differed for each modality. 

Augmented Data: We took random linear 

combinations of mineral spectra to generate multi-

mineral compositions, similar to the technique of 

Cochrane and Blacksberg [2]. Spectra measured from 

pure mineral samples were first normalized by their 

integration time – to obtain counts per second. We then 

randomized linear combinations of pure mineral 

spectra, and min-max normalized the intensities of each. 

We used this augmented data to help train and evaluate 

the neural network. Figure 1 compares an augmented to 

natural rock spectrum with similar compositions. 

 

 
Figure 1: An augmented spectrum compared to a 

natural rock spectrum with similar composition: 20% 

potassium feldspar, 20% muscovite, 10% plagioclase, 

and 30% quartz. 

 

Multimodal Neural Network (MNN): Ishikawa 

and Gulick [3] found that a neural network can classify 

pure minerals with a single band Raman spectrometer, 

performing at 83% average classification accuracy, and 

100% for quartz, olivines, and pyroxenes. We improved 

upon these results with multimodal learning. Each data 

source was used as a separate modality, thus enabling 

the neural network to extract both independent and 

dependent features between each wavelength and 

wavenumber range.  
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Figure 2 shows the architecture of our neural 

network. Our MNN used the following modifications 

from the multimodal architecture first proposed by 

Ngiam et al. [4]: 

1. Trained with supervised learning. 

2. Used Exponential Linear Units (ELU). 

3. Added a third modality. 

 

 
Figure 2: Neural network architecture for our MNN. 

 

Results and Discussion: Figure 3 shows results 

after training on our dataset and testing on the RRUFF 

spectra, only using spectra from pure mineral samples. 

This was repeated 100 times to capture random variance 

from weight initialization and training. We used 

modalities (1) and (3) and compared them to a Multi-

Layer Perceptron (MLP), which is a fully connected 

neural network, that did not use multimodal learning. 

Instead, the MLP considered the concatenated 

modalities (1) and (3) as one input vector. Figure 3 

shows that using both modalities outperformed using 

either one modality. It also shows that the MLP is more 

erratic then the MNN. When removing halite, the MNN 

performed consistently with 99% classification 

accuracy. These results were obtained using PCA. 

 

  
Figure 3: Pure mineral testing on the RRUFF dataset. 

 

Figure 4 shows the results for testing on our dataset 

of rocks. Each rock can be classified as positive for each 

mineral, thus containing either one or several minerals. 

We compared using each independent modality to using 

all 3 modalities with an MNN. This was also repeated 

100 times to capture any variance. More work is needed 

to improve results, though these preliminary results are 

promising. These results were obtained without using 

PCA. It is worth noting that several of our rocks had low 

compositions (1-5%) of some of these minerals – 

especially quartz. Gypsum however, always had a high 

composition in the rocks (50-85%) when present. 

 

 
Figure 4: Testing on rocks, with multiple minerals. 

Each marker represents one of 100 random runs, the 

larger the marker the more frequent the accuracy, 

where n is frequency and width = n / 100. 
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