THE OCCURRENCE OF PLANETS IN THE ABIOGENESIS ZONE. M. Jusino ${ }^{1}$, J. Colón ${ }^{2}$, and A. Méndez ${ }^{3}$, ${ }^{1}$ Planetary Habitability Laboratory at University of Puerto Rico, Arecibo (marcos.jusino1@upr.edu), ${ }^{2}$ Planetary Habitability Laboratory at University of Puerto Rico, Arecibo (jose.colon79@upr.edu), ${ }^{3}$ Planetary Habitability Laboratory at University of Puerto Rico, Arecibo (abel.mendez@upr.edu)

Introduction: Precursor molecules to the building blocks of life such as ribonucleotides, amino acids and lipids could have been produced in an early, prebiotic Earth in which ultraviolet radiation induced the activation energy required to trigger photochemical reactions. For planets to be able to host these photochemical reactions and possibly originate life, they must be able to maintain liquid surface water. Therefore, planets must be orbiting within the Habitable Zone, which is generally defined as the area around a star in which a planet with an atmosphere could sustain surface liquid water [1]. (see Figure 1).

Figure 1: Plot of the orbits of the planets around TRAPPIST-1 and the habitable zone (green shades). (PHL, UPR Arecibo)

The Abiogenesis Zone, as defined by Rimmer et al. [2], is the zone in which a yield of 50% for the photochemical products is obtained, adopting the current UV activity as representative of the UV activity during the stellar lifetime and assuming a young Earth atmosphere. Rimmer et al. [2] portrayed this by modeling the UV detachment of electrons from anions in solution, such as $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} in the presence of HCN to produce HS^{-}and SO_{3}^{-2} for the latter, in representation of past works involving reactions to form the pyrimidine nucleotide RNA precursors [3, 4].

Details for the Abiogenesis Zone. This zone approximately ranges in UV radiation from 200 nm to 280 nm , since this is the critical wavelength range for photochemical reactions as proved by Todd et al. [5].

A weakly reduced atmosphere with a plausible composition of $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2}$, and CO_{2}, as speculated to have had existed in prebiotic times between 3.8 and 3.5 Ga [6], is essential for the photochemical reactions to occur, since UV radiation at its critical wavelength range is weakened in present-day Earth's atmosphere.

Calculations done in our project suggest that there is a proportional relation between the mass and effective temperature of the star and the exterior limit of their Abiogenesis Zone. The lower the mass of the star, the smaller the radius of the zone's exterior limit should be, and vice versa (see Figure 2). This also suggests an inverse relation between the positioning of the Habitable Zone and the Abiogenesis Zone.

Figure 2: Relation between the size of the Abiogenesis Zone and the main-sequence star type.

Lingam and Loeb [7] proved that planets orbiting around stars type M-dwarfs cannot sustain Earth-like biospheres because they do not receive enough photons in the photosynthetically acting range of $400-750 \mathrm{~nm}$, unless they are active enough for flares to compensate. However, since only a 20% of M-dwarfs are active [2], and flares give rise to other positive and negative effects [7], we do not consider them in our project.
Known Planets in the Abiogenesis Zone: When applying our estimates of the Abiogenesis Zone to our catalog of Potentially Habitable Exoplanets Catalog we found nine candidates: Kepler-452 b ($R_{E}=1.63$), τ Cet e ($R_{E}=\sim 1.8$), Kepler-1638 b ($R_{E}=1.87$), Kepler$1606 \mathrm{~b}\left(R_{E}=2.07\right)$, Kepler-1701 b $\left(R_{E}=2.22\right)$, Kep-ler-1090 b $\left(R_{E}=2.25\right)$, Kepler-22 b $\left(R_{E}=2.38\right)$, Kepler-1552 b $\quad\left(R_{E}=2.47\right)$, and Kepler-1632 b ($R_{E}=2.47$). Although all of these eight exoplanets are
inside both the Habitability Zone and the Abiogenesis Zone, they are all warm superterrans (i.e. Super-Earths or Mini-Neptunes), and less likely to support life. A large planetary radius might suggest the presence of a thick gaseous atmosphere, deep oceans, or both. Thus, these planets are less likely to be of rocky composition.

Kasting [6] showed that the presence of the Car-bon-Silicate cycle in a planet is key to its habitability since it acts as a temperature regulatory system to preserve liquid water on its surface - specially the silicates weathering component. Vast amounts of water oceans in a planet create obstacles (ice VII) between the planetary surface and the water, and gaseous planets imply high temperatures and high pressures, significantly decreasing the chances of liquid water on its surface; both scenarios interrupt the Carbon-Silicate cycle [8].

Alibert [8] calculated the maximum planetary radius that would make a planet inhabitable. For planets in the Super-Earth mass range (1 to 12 Earth masses), the maximum radius that a planet, with composition similar to that of Earth, can have varies between 1.7 to 2.2 Earth radii. Our best choices for candidates would theoretically be Kepler- $452 \mathrm{~b}\left(R_{E}=1.63\right)$ and τ Cet e ($R_{E}=\sim 1.8$) because of their lowest planetary radius from our sample. (see Figure 3 and Figure 4)

Figure 3: Plot of Kepler-452 b, an exoplanet around Kepler-452. (PHL, UPR Arecibo)

Figure 4: Plot of τ Cet e, an exoplanet around τ Cet. (PHL, UPR Arecibo)

When applying our estimates of the Abiogenesis Zone to our very own Solar System, we find its exterior limit to be at 2.02 AU . According to the Habitable Zone calculator [9, 10], the inner limit of our Habitable Zone is located at 0.95 AU and its external limit is located at 1.68 AU. This suggests that both an early Earth (with a reduced atmosphere) and an early Mars (in which surface liquid water was present) could have also hosted these photochemical reactions and thus synthetized key precursor molecules to the building blocks of life.

Conclusion: The Abiogenesis Zone is the zone in which a yield of 50% for the photochemical product is obtained, adopting the current UV activity as representative of the UV activity during the stellar lifetime and assuming a young Earth atmosphere [2]. Although there are nine small exoplanets in both zones, none of them are very good candidates due to their size, except for maybe Kepler-452 b and τ Cet e. So far, not a single Earth-sized planet has been discovered to be in both the Habitable Zone and the Abiogenesis Zone.

References: [1] Kasting J. F. et al. (1993) Icarus, 101(1), 108-128. [2] Rimmer P. B. et al. (2018) Sci. Adv., 4. [3] Patel B. H. et al. (2015) Nat. Chem., 7, 301-307. [4] Xu J. et al. (2018) Chem. Commun., 54, 5566-5569. [5] Todd Z. R. et al. (2018) Chem. Commип., 54, 1121-1124. [6] Kasting J. F. (1993) Science, 259, 920-926. [7] Lingam M. and Loeb A. (2019) Monthly Notices of the Royal Astronomical Society, 000, 1-4. [8] Alibert Y. (2013) Astronomy \& Astrophysics, 561. [9] Kopparapu et al. (2013) Astrophysical Journal, 765, 131. [10] Kopparapu et al. (2014), Astrophysical Journal Letters, 787, L29.

