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Introduction: Tephra are a common explosive 

volcanic product, typically composed of minerals, 

debris from previous eruptions, and glass (quenched 

melt) that provide information about the physical and 

chemical characteristics of the magma source region 

and eruptive vent [1–6]. Remote identification and non-

destructive characterization of tephra are important for 

studies where sample collection may not be feasible, 

such as on other planetary bodies, where samples may 

be limited in size or where they are difficult to collect, 

such as in terrestrial deep-sea drill cores. Although the 

study of tephrochronology has not yet been applied to 

other bodies, potential extraterrestrial tephra deposits 

have been identified [e.g., 7–12] and the knowledge 

developed on terrestrial samples could be applied if 

identification methods are robust. 

Previous studies have worked to identify tephra 

deposits using spectral features [e.g., 12, 13]. Band 

parameters in the 1 μm region have been used to 

successfully locate tephra layers in oceanic sedimentary 

settings [13]. However, extracting more information, 

such as glass composition or concentration, remains 

difficult using spectral band methods. Here we use 

multivariate partial least squares (PLS) analysis to both 

quantify and characterize the glass present in a tephra 

deposit using the entire spectral range. 

Samples and Methods: This study utilizes 21 

natural tephra samples from ten different terrestrial 

locations. Glass compositions range from 46–80 wt% 

SiO2 and 5–15 wt% total alkali (Na2O + K2O), with a 

glass modal abundance of 40–91% (Table 1 of [14]). 

Bulk or whole rock compositions (glass + minerals and 

other eruptive debris) span the range 46–74 wt% SiO2, 

and 4.2–12 wt% total alkali (Na2O + K2O).  

Visible and near-infrared (VNIR: 0.35–2.5 µm) 

spectra were collected using an ASD Fieldspec4 at the 

University of Tennessee Knoxville (UTK). Bulk mid-

infrared (MIR: 400–2500 cm-1, or 4–25 µm) spectra 

were obtained with a Nicolet 6700 FTIR spectrometer 

at SUNY Stony Brook as described in [14]. Spectra of 

the >2 mm/>500 μm size fraction were not collected for 

the MIR [14]. Major and minor element analyses were 

completed on the Cameca SX-100 electron microprobe 

at UTK. Phase abundances were measured using the 

Phenom Pro XL scanning electron microscope at UTK 

following the methods of [13,15].  

VNIR and MIR spectra and compositional data were 

analyzed using the Data Exploration and Visualization 

Analysis of Spectra (DEVAS) website ([16]; 

http://nemo.mtholyoke.edu/). Partial least squares 

(PLS) regressions were used to model the relationship 

between VNIR and MIR spectra of the natural tephra 

samples and various compositional parameters. 

Separate PLS models were built for both the VNIR and 

MIR spectra to predict the modal abundance of glass 

present in each sample, as well as the SiO2 wt% of both 

the glass and bulk sample, and size fraction. 

The spectra were baseline corrected (continuum 

removed) and normalized using several methods (Table 

1) to optimize the root mean square error with K-fold 

cross-validation (RMSE-CV) of each regression model, 

using nine folds. The combination of baseline removal 

and normalization routine for each PLS model was 

chosen to yield the lowest RMSE-CV for each 

predictive model, and therefore each PLS model calls 

for a unique combination (Table 1). The inclusion of 

this step greatly increases the accuracy of the PLS 

models by removing run-to-run variations in spectra. 

Results: All PLS models required some amount of 

preprocessing in the form of baseline removal or 

normalization, frequently both. The preprocessing steps 

and predictions for each PLS model are given in Table 

1. Fig. 1 gives predictions for each model. Uncertainty 

(calculated as RMSE-CV) of each model is reported in  

Table 1, and the goodness-of-fit of the models are 

reported as the R2. The MIR PLS models have  

Table 1. VNIR and MIR PLS model parameters 
  Predicted Variable Normalization Baseline Correction Components R2 RMSE-CV 

V
N

IR
 Glass Phase % Max Kaijfosz-Kwiatek [21] 2 0.60 ±0.12 % 

Glass wt % SiO2 L2 ASL [21] 5 0.85 ±6.05 wt% 

Bulk wt % SiO2 Max ASL [21] 9 0.96 ±4.30 wt% 

Grain Size Min - 2 0.08 ±393 m 

M
IR

 

Glass Phase % Cumulative Tophat [22] 4 0.77 ±0.12 % 

Glass wt % SiO2 Cumulative MedianFilter [21] 9 0.94 ±4.02 wt% 

Bulk wt % SiO2 Cumulative  ASL [21] 5 0.98 ±3.39 wt% 

Grain Size Cumulative MPLS [21] 7 0.89 ±339 m 
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consistently better R2 and accuracies than the VNIR 

models when predicting variables. 

VNIR Modeling Results: Using VNIR data, PLS 

models for bulk SiO2 (Fig. 1a) are accurate to ±4.30 

wt%, while the SiO2 content of glass can be predicted to 

±6.05 wt% (Fig. 1b). The amount of glass can be 

predicted to ±0.12 modal % (Fig. 1c). PLS models using 

VNIR spectra do a poor job of predicting grain size 

(Table 1, Fig. 1d), with an R2 of 0.08.   

MIR Modeling Results: PLS models built using MIR 

spectra are consistently equal to or better than those 

based on the VNIR data: ±3.39 wt% for bulk SiO2 (Fig. 

1e), ±4.02 wt% SiO2 in the glass (Fig. 1f), ±0.12 modal 

% (Fig. 1g) for the amount of glass present, and ±0.34 

μm (Fig. 1h) for grain size.  

Discussion: This work demonstrates that PLS 

models can accurately quantify glass abundance and 

compositional information using either VNIR and MIR 

spectra in volcanic tephra. The multivariate models 

have better accuracy than other studies have achieved 

using spectral band parameters [e.g., 12, 13]. Moreover, 

both the bulk and glass wt % SiO2 composition can be 

measured with these methods in a non-destructive and 

non-disruptive manner. Calculated RMSE accuracies 

(Table 1) for both the VNIR and MIR PLS models 

suggest their predictive capabilities vary, indicating that 

while both spectral regions can be used for 

characterization of glass-bearing deposits, the MIR is 

nominally better for predictions.  

The PLS analysis, which works using linear 

combinations for the regressions [17], produces more 

accurate results from the MIR spectra, likely because 

the MIR region more readily deconvolves in a linear 

manner [18] than the VNIR.  Spectra in the VNIR region 

do not add linearly [e.g., 19, 20], and thus bands cannot 

be directly attributed to a compositional parameter such 

as bulk wt% SiO2, particularly because the spectra 

utilized here do not represent a single phase, or even a 

three-phase mixture.  
This work highlights the importance of the MIR PLS 

models, suggesting that developing a better 

understanding of glassy tephra deposits remotely 

requires increased emphasis on high-spectral-resolution 

MIR instruments. However, the more-commonly 

available VNIR spectra still remain useful in performing 

bulk characterization and establishing the presence and 

abundance of glass. 
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Figure 1. Results of predictions by PLS models for both the VNIR and MIR. Size fraction predictions are as follows: <63 μm, 

63–125 μm, 125–250 μm, 250–500 μm or 250 μm–2 mm, and >500 μm or >2 mm. Prediction error is shown by the vertical black 

error bars. Measurement error (x-axis) is within the size of the points. Dashed line shows line of best fit.  
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